Le présent manuel est destiné uniquement à des fins éducatives. Rien de ce qui est contenu aux présentes ne doit être considéré comme une approbation ou une désapprobation de quelque pratique ou produit particulier que ce soit.
Avant-propos

Chaque mine doit pouvoir compter sur une équipe de sauvetage minier qui aide à veiller à la sécurité des travailleurs et des lieux sur les sites miniers à l'échelle de la Colombie-Britannique, du Yukon, des Territoires du Nord-Ouest et du Nunavut. Le présent manuel a été élaboré afin de présenter l'équipement, les procédures, les pratiques et les principes que les stagiaires en sauvetage minier doivent connaître avant d'intervenir lorsque des incidents surviennent dans des exploitations minières souterraines et à ciel ouvert.

Depuis plus d'un siècle, des équipes de sauvetage minier interviennent dans le cadre d'incidents et de désastres qui surviennent dans les régions du nord et de l'ouest du Canada. C'est grâce à leur formation et à leur pratique que leurs membres sont en mesure de rentrer chez eux sains et saufs. De même, les responsables des mines doivent également connaître leurs rôles et responsabilités dans l'éventualité d'une situation urgence. Il est donc essentiel que l'enseignement adéquat soit accompagné d'efforts individuels et collectifs pour maîtriser les compétences, l'équipement et les connaissances requises pour procéder à une intervention en cas de situation d'urgence minière. Ce manuel et le cours de formation afférent constituent les premières étapes qui vous permettront éventuellement d'intervenir en cas d'urgence.

Il existe plusieurs types d'incidents et de situations d'urgence auxquels les équipes de sauvetage minier peuvent faire face, y compris des incendies électriques, des fuites de gaz, des avalanches et des accidents de véhicules motorisés. Le sauvetage minier peut être une tâche dangereuse, particulièrement s'il n'est pas exécuté comme il se doit. Les sauveteurs sont d'abord responsables de leur propre sécurité et de celle de leur équipe, mais certaines interventions exigeront également qu'ils prennent en charge des victimes qui ont désespérément besoin d'aide. Le comité chargé de rédiger le présent manuel a déployé tous les efforts nécessaires, soit en consultant les plus récentes recherches et des experts du gouvernement et du secteur, pour s'assurer que les renseignements qui s'y trouvent sont aussi fiables, pertinents et, surtout, sécuritaires que possible.

La lecture de ce manuel et le suivi du cours ne seront pas suffisants pour faire de vous un sauveteur minier aguerri. Faire partie d'une équipe de sauvetage minier signifie vous astreindre, avec vos collègues sauveteurs, à un régime d'entraînement visant à établir la cohésion, la communication et la confiance nécessaires pour évoluer en équipe dans le contexte stressant d'une intervention d'urgence. À l'occasion, il se peut que vous soyez appelé à prêter main-forte dans d'autres exploitations minières ou en-dehors du site où vous êtes affecté. Peu importe l'endroit où votre formation en sauvetage minier vous mène, portez l'autocollant « MINE RESCUE » (sauvetage minier) avec la fierté et la responsabilité qu'il mérite.

Al Hoffman
Inspecteur en chef des mines
Ministère de l’Énergie et des Mines
Colombie-Britannique

Bruce Milligan
Directeur, Santé et sécurité au travail
Commission de la santé et de la sécurité au travail du Yukon
Yukon

Peter Bengts
Inspecteur en chef des mines
Commission de la sécurité au travail et de l’indemnisation des travailleurs
Territoires du Nord-Ouest et Nunavut
<table>
<thead>
<tr>
<th>Chapitre 12 Opérations souterraines</th>
<th>12-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>12-2</td>
</tr>
<tr>
<td>UN GUIDE POUR PLANIFIER LES PROCÉDURES D’URGENCE DANS LES MINES</td>
<td>12-2</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES ET VENTILATION</td>
<td>12-4</td>
</tr>
<tr>
<td>INSTRUMENTS UTILISÉS POUR LA VENTILATION</td>
<td>12-9</td>
</tr>
<tr>
<td>SCHÉMAS DE MINE</td>
<td>12-10</td>
</tr>
<tr>
<td>FEUX DE MINE SOUTERRAINE – MAÎTRISE ET SUPPRESSION</td>
<td>12-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 11 Sauvetage par câble</th>
<th>11-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>11-2</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>11-3</td>
</tr>
<tr>
<td>QUINCAILLERIE</td>
<td>11-8</td>
</tr>
<tr>
<td>NŒUDS, AJUTS ET AMARRAGES</td>
<td>11-13</td>
</tr>
<tr>
<td>HARNAIS</td>
<td>11-17</td>
</tr>
<tr>
<td>ANCRAGES</td>
<td>11-37</td>
</tr>
<tr>
<td>GAINS MÉCANIQUES</td>
<td>11-43</td>
</tr>
<tr>
<td>ASSURAGE</td>
<td>11-50</td>
</tr>
<tr>
<td>DESCENTE EN RAPPEL</td>
<td>11-55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 10 Feu</th>
<th>10-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>10-2</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>10-2</td>
</tr>
<tr>
<td>COMPORTEMENT DU FEU</td>
<td>10-3</td>
</tr>
<tr>
<td>CLASSIFICATION DES INCENDIES</td>
<td>10-9</td>
</tr>
<tr>
<td>PHASES DES INCENDIES</td>
<td>10-10</td>
</tr>
<tr>
<td>DANGERS POSÉS PAR LA PROGRESSION D’UN INCENDIE</td>
<td>10-11</td>
</tr>
<tr>
<td>VENTILATION</td>
<td>10-17</td>
</tr>
<tr>
<td>FEUX D’ÉQUIPEMENT</td>
<td>10-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>10-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 9 Administration de l’oxygène</th>
<th>9-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>9-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>9-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>9-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>9-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>9-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 8 Inspection des bouteilles et assemblage des composantes</th>
<th>8-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>8-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>8-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>8-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>8-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>8-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 7 Durée de la bouteille d’oxygène</th>
<th>7-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>7-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>7-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>7-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>7-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>7-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 6 Durée de l’oxygène</th>
<th>6-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>6-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>6-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>6-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>6-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>6-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 5 Équipement d’oxygénotérapie</th>
<th>5-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>5-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>5-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>5-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>5-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>5-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 4 Inscription des bouteilles et assemblage des composantes</th>
<th>4-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>4-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>4-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>4-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>4-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>4-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 3 Administration de l’oxygène</th>
<th>3-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>3-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>3-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>3-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>3-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>3-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 2 Inspection des bouteilles et assemblage des composantes</th>
<th>2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>2-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>2-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>2-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>2-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>2-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre 1 Équipement d’oxygénotérapie</th>
<th>1-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIFS</td>
<td>1-12</td>
</tr>
<tr>
<td>ÉQUIPEMENT DE PROTECTION INDIVIDUEL</td>
<td>1-13</td>
</tr>
<tr>
<td>MAÎTRISE DES INCENDIES</td>
<td>1-17</td>
</tr>
<tr>
<td>ÉQUIPEMENT D’ÉQUIPEMENT</td>
<td>1-18</td>
</tr>
<tr>
<td>BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)</td>
<td>1-18</td>
</tr>
</tbody>
</table>
Chapitre 13 Compétences liées aux opérations de sauvetage ... 13-1

OBJECTIFS .. 13-2

UTILISATION D’EXTINCTEURS PORTATIFS ... 13-2

RECHERCHE ET SAUVETAGE DANS DES CONSTRUCTIONS .. 13-2

PROCÉDURE DE RECHERCHE STANDARD ... 13-3

GESTION DES VICTIMES .. 13-5

DÉSINCARCÉRATION D’UN VÉHICULE OU ÉQUIPEMENT ... 13-5

AUTRES TECHNIQUES DE SAUVETAGE .. 13-6

Annexe ... 13-2
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 1 Introduction
INTRODUCTION

Le présent manuel est conçu pour offrir une formation de base sur les procédures de sauvetage devant être suivies en cas d'incident nécessitant une intervention d'urgence dans une exploitation minière souterraine ou à ciel ouvert. Les lois minières de tous les territoires de compétences de l'ouest du Canada exigent que des équipes de sauvetage minier formées et bien équipées soient en place dans toutes les exploitations minières souterraines et à ciel ouvert.

Il est donc de la responsabilité de la direction de chaque exploitation de nommer une personne qualifiée à titre de formateur en sauvetage minier, et de s'assurer que tous les membres de l'équipe de sauvetage s'entraînent en équipe. Le formateur en sauvetage nommé est responsable de conserver un registre des dates et heures des formations, ainsi que du matériel et de l'équipement utilisés lors de ces dernières. Tous les registres doivent être signés par les employeurs et les participants à la formation. Il est impératif d'élaborer un programme de formation adéquatement planifié afin d'optimiser les résultats de la formation dans le temps accordé, tel qu'établi par les lois locales.

PRINCIPES FONDAMENTAUX DE LA FORMATION EN SAUVETAGE MINIER

Les principes fondamentaux de la formation en sauvetage minier sont, par ordre d'importance, les suivants :
• Veiller à la sécurité de soi-même et de l'équipe de sauvetage.
• Déployer des efforts pour réaliser le sauvetage ou veiller à la sécurité des travailleurs coincés ou blessés.
• Protéger la propriété minière contre des dommages supplémentaires.
• Remettre le lieu de travail touché en état et récupérer l'équipement.

La formation permettra aux membres des équipes de sauvetage minier de se familiariser avec ce qui suit :
• L'équipement de sauvetage minier;
• L'équipement minier qui peut être utile en cas de situation d'urgence (grues, chargeuses, bennes à godet, etc.);
• Les dangers présents lors des sauvetages miniers (gaz toxiques et inflammables, électricité, éboulements, etc.);
• Les événements dangereux les plus fréquents, comme ceux mettant en cause le feu, la machinerie ou l'électricité.

EXIGENCES DE LA FORMATION EN SAUVETAGE MINIER

Le travail de sauvetage minier est exigeant aussi bien physiquement que mentalement, en plus d'être dangereux à l'occasion. Les membres des équipes de sauvetage minier doivent non seulement posséder une connaissance approfondie de leur équipement, mais aussi être en bonne condition et forme physiques afin d'exécuter leur travail exigeant tout en portant un appareil respiratoire. De plus, ils doivent savoir faire preuve de bon sens et posséder un bon tempérament. Ils doivent être sélectionnés avec énormément de soin et recevoir une formation approfondie.

Des formations et enseignements supplémentaires doivent être fréquemment offerts dans une atmosphère irrespirable afin de s'assurer que l'équipe et l'équipement sont en bonne condition pour
faire face à une situation d'urgence. Des exercices de formation comprenant un problème de récupération doivent également être effectués à l'occasion. De nombreuses heures de formation et d'entraînement sont nécessaires pour mettre sur pied une équipe de sauvetage minier compétente pouvant collaborer efficacement avec d'autres équipes pour réaliser les objectifs de sauvetage dans l'éventualité d'une situation d'urgence minière.

Il est également important que les responsables des mines reçoivent périodiquement de l'enseignement et de la formation à propos des tâches qu'ils doivent individuellement et collectivement exécuter dans le cas où un incident nécessitant une intervention de sauvetage minier survient. Ils doivent entre autres savoir où obtenir les outils, l'équipement et le matériel, tant sur le site minier qu'au près de sources externes.

L'ensemble du personnel de supervision doit être au courant qu'en l'absence d'une autorité supérieure, il doit assumer la responsabilité et intervenir dans les cas nécessitant une attention immédiate. Il doit en outre informer toutes les personnes requises devant apporter de l'aide dans le cas d'un désastre, particulièrement l'organisme de réglementation responsable du district dans lequel se trouvent la mine, l'équipe de sauvetage minier et toute autre source de soutien qui pourrait être prête à aider.

QUALIFICATIONS MINIMALES

Les candidats à la formation en sauvetage minier doivent répondre aux exigences minimales qui suivent :

- Être âgé d'au moins 18 ans.
- Savoir parler, lire et écrire en anglais.*
- Être en bonne condition physique et mentale.*
- Être familier avec les conditions, les pratiques, les dangers et l'équipement associés aux mines.
- Ne pas avoir les membranes du tympan perforées.
- Être titulaire d'un certificat réglementaire de premiers soins valide avec formation en immobilisation de la colonne vertébrale ou l'équivalent.
- Avoir le visage rasé de près, sans aucune pilosité faciale qui pourrait compromettre l'usage de l'appareil respiratoire.
- Détenir toute certification supplémentaire requise dans votre territoire.

Qu'il soit formé en sauvetage minier souterrain, en sauvetage minier en surface ou en premiers soins, le candidat doit être mentalement et physiquement apte et préparé à venir en aide à chaque fois qu'on le lui demande.

* = Critère assujetti à la discrétion du directeur de mine.

CERTIFICATION EN SAUVETAGE MINIER

Le certificat de sauvetage minier souterrain ou en surface de base sera remis aux candidats ayant terminé le cours de formation avec succès. Pour réussir, le candidat doit obtenir la note de 70 % à l'examen. La participation continue dans une équipe de sauvetage minier et le respect des exigences minimales établies ci-dessus feront en sorte que la certification ne viendra pas à échéance. Un sauveteur peut déposer une demande en vue d'obtenir un certificat avancé s'il compte cinq années de service et qu'il répond à d'autres critères liés aux compétences.
REMERCIEMENTS

Jerrold Jewsbury Ministère de l'Énergie et des Mines de la Colombie-Britannique
Gerry Wong Teck Highland Valley Copper
Lex Lovatt Commission de la sécurité au travail et de l’indemnisation des travailleurs des Territoires du Nord-Ouest et du Nunavut
Ron Ratz Commission de la santé et de la sécurité au travail du Yukon

Une aide considérable dans la création et la révision du contenu du manuel a été offerte par :

- East Kootenay Mining Industry Safety Association, Colombie-Britannique
- North/Central/South Mine Rescue, Colombie-Britannique
- Northern Mine Safety Forum
- Yukon Mine Producers Group

Le manuel s’inspire également d’un certain nombre de publications antérieures, notamment :

- The Handbook of Training in Mine Rescue and Recovery Operations, ministère du Travail de l’Ontario
- Mine Rescue Crisis Response Manual, Administration territoriale du Yukon
- Occupational First Aid Manual, British Columbia Workers’ Compensation Board
- Electrical Safety for Policemen and Firemen, B.C. Hydro
- Rigging for Rescue, Dynamic Rescue Systems
- Operation Recharge Inspection and Maintenance Manual – Cartridge Dry Chemical Fire Extinguishers, ANSUL
- Manitoba Mine Rescue Training et matériel de référence, ministère des Ressources minières du Manitoba
- Saskatchewan Mine Emergency Response Program, Saskatchewan Labour Occupational Health and Safety
- Code canadien de l’électricité, Association canadienne de normalisation
- Différentes publications de l’American Congress of Governmental Industrial Hygienists (ACGIH), du National Institute for Occupational Safety and Health (NIOSH), d’Environnement Canada, du Centre canadien d’hygiène et de sécurité au travail (CCHST) et de Santé Canada.
Un certain nombre de photos du présent manuel sont utilisées avec l'aimable autorisation des fabricants et des titulaires de droits, y compris :

- Draeger Canada
- Ferno Canada
- CMC Rescue
- Biomarine Inc.
- Industrial Scientific
- Honeywell Analytics
- vRigger
- CSE Incendie et Sécurité
- Scott Safety
- MSA Canada
- O-Two
- AnimatedKnots.Com
- Carleton Rescue
- Gastec

Nous remercions sincèrement ces sources.

Le présent manuel a pour but de présenter les principes, techniques et équipements de sauvetage minier de base. Familiarisez-vous avec les procédures propres aux sites, avec les directives du fabricant et les autres programmes de formation servant de compléments au présent cours.
Manuel de sauvetage minier de l'ouest du Canada

Chapitre 2 Organisation du sauvetage minier
OBJECTIFS

Avant d’acquérir les compétences nécessaires pour mener des opérations de sauvetage minier, les apprenants doivent comprendre la manière dont les équipes et les opérations de sauvetage sont organisées. Au terme de ce chapitre, l’apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- La structure de l’équipe de sauvetage minier;
- La communication entre les membres de l’équipe;
- Le processus de prise de décisions;
- Les exigences relatives à l’équipement de protection individuelle;
- Les bases/zones d’air neuf;
- La première intervention relativement aux matières dangereuses;
- Le stress physique/émotionnel lors d’incidents critiques.

CONCEPTS ET DÉFINITIONS

Un plan d'intervention en cas d'urgence minière (PIUM) est le guide de l’entreprise relativement à l’ensemble des procédures et des plans d’action en cas de situation d’urgence survenant sur le site. Ce plan décrit les rôles et responsabilités de la direction, des équipes de sauvetage et du personnel de soutien.

Un système de gestion des incidents, comme un système de commandement en cas d'incident (SCI), permet de commander, de contrôler et de coordonner l’intervention en cas d’urgence. Le système de gestion des incidents est une composante du PIUM.

L’ÉQUIPE DE SAUVETAGE MINIER

Les équipes de sauvetage minier sont appelées à intervenir dans divers types de situations d’urgence. Le temps sera un facteur déterminant, et les pratiques qui suivent aideront les équipes à travailler efficacement en cas de situation d’urgence :

1. L’élément le plus important est la structure de l’équipe. Elle donne lieu à des efforts couronnés de succès dans des disciplines comme les techniques de désincarcération, les méthodes de premiers soins et les procédures de lutte contre les incendies nécessitant un effort d’équipe.
2. L’équipe doit planifier les procédures de base avant qu’une situation d’urgence ne survienne, en plus de s’exercer à les mettre en œuvre.

Le capitaine

Le capitaine est le membre numéro un de l’équipe. Par-dessus tout, le capitaine doit être un chef compétent jouissant de la confiance et du respect des membres de l’équipe. Il doit être en bonne condition physique et mentale, en plus d’être expérimenté dans chaque aspect d'une intervention en cas d’urgence. Parmi les responsabilités du capitaine, il doit :

- S’assurer que l’équipe est prête à intervenir.
- Veiller à ce que les appareils respiratoires et l’équipement auxiliaire soient prêts pour une intervention.
- S’assurer du fonctionnement sécuritaire de l’ensemble de l’équipement de sauvetage.
- Communiquer au sein de la structure d’intervention en cas d’urgence.
- Connaître toutes les installations de la mine et les dangers pertinents relativement aux incendies, aux explosions, à l'installation électrique, à l'installation mécanique et aux produits chimiques.
- Détenu des connaissances sur les principes de ventilation.
- Posséder des connaissances sur les gaz de mine.
- Diriger et appuyer le travail des membres de l'équipe sur la scène de l'intervention.
- Déterminer et inspecter tous les aspects d'une opération de sauvetage.
- Établir et assurer la sécurité et le contrôle de la scène de l'incident.

Le vice-capitaine

Le vice-capitaine d'une équipe de sauvetage minier en surface est le membre numéro deux. Dans les équipes en milieu souterrain, il est le membre numéro cinq. Dans l'éventualité où le capitaine n'est pas en mesure d'assumer les responsabilités qui lui sont assignées, le vice-capitaine doit prendre le contrôle de l'équipe. Il doit donc posséder les mêmes qualifications que le capitaine.

Les vice-capitaines sont également responsables de surveiller les membres de l'équipe et d'avertir le capitaine si l'un d'eux démontre des signes de détresse ou de fatigue lors d'une intervention. Ils doivent également s'assurer que les membres de l'équipe effectuent une rotation lorsqu'ils transportent une civière sur de longues distances afin de prévenir la fatigue.

Les membres de l'équipe

Une équipe de sauvetage minier standard compte six membres, y compris le capitaine. Le sixième membre d'une équipe en milieu souterrain est le coordonnateur. Il fournit des directives au capitaine de l'équipe en milieu souterrain à partir du centre de commandement de l'incident, situé à la surface. Tous les membres de l'équipe ont la responsabilité de cerner les dangers et de communiquer l'information aux autres membres de l'équipe. De plus, ils doivent régulièrement se reposer et observer constamment leurs coéquipiers pour relever des signes de détresse. Le travail doit être divisé entre les membres d'une manière aussi égale que possible. Les capitaines d'équipe sont chargés de déléguer des tâches aux autres membres, comme :

- Exploration de la zone affectée de la mine.
- Exécution des travaux sur cordes et câblage.
- Lutte contre un incendie.
- Premiers soins.
- Désincarcération.

Selon les exigences ou les compétences particulières des membres, les équipes peuvent ajouter des membres lors d'une intervention. Tout membre supplémentaire doit avoir un numéro assigné qui suit celui des six membres initiaux.

L'aide mutuelle

Il se peut que d'importants incidents nécessitent l'aide d'autres mines ou organisations spécialisées en intervention en cas d'urgence. Cette collaboration s'appelle l'entraide mutuelle et constitue l'une des composantes d'un PIUM. Lorsqu'on collabore avec des équipes de sauvetage minier, il est essentiel de suivre le même format de numérotation pour les désignations d'équipe. On veillera ainsi à ce que les communications entre l'équipe de direction responsable de l'incident et chaque équipe d'intervention soient harmonisées avec le PIUM et que toutes les responsabilités soient attribuées d'une manière ordonnée. Si du personnel supplémentaire est ajouté à une équipe, des numéros d'équipe seront...
attribués à chaque sauveteur à la suite des six membres initiaux (membre de l'équipe numéro sept, huit, neuf, etc.).

Unité de sauvetage minier

L'unité de sauvetage minier est composée d'au moins trois équipes de sauvetage minier convoquées dans le cadre d'un désastre minier. Si l'opération dure plus de six heures, il faut faire appel à des équipes supplémentaires. Pour réduire la fatigue, on fait la rotation des équipes afin qu'une équipe soit au travail, qu'une autre soit prête à prêter main-forte à titre de réserve et que la dernière se repose. Les rotations habituelles pour des unités à trois, six et neuf équipes sont les suivantes :

<table>
<thead>
<tr>
<th>Équipe active (maximum deux heures)</th>
<th>Équipe de réserve</th>
<th>Équipe au repos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Équipe A</td>
<td>Équipe B</td>
<td>Équipe C</td>
</tr>
<tr>
<td>Équipe B</td>
<td>Équipe C</td>
<td>Équipe A</td>
</tr>
<tr>
<td>Équipe C</td>
<td>Équipe A</td>
<td>Équipe B</td>
</tr>
</tbody>
</table>

Figure 2.1 : Ce tableau présente une rotation des équipes de sauvetage minier en présence de six équipes. Ainsi, chaque rotation propose six heures de service (deux heures en action, deux heures en attente et deux heures en réserve), suivi de six heures de repos.
Figure 2.2 : Ce tableau présente une rotation des équipes de sauvetage minier en présence de neuf équipes. Dans le cas d'une rotation à neuf équipes, le temps de repos sera prolongé pour correspondre à celui des équipes déployées pour l'urgence minière.

<table>
<thead>
<tr>
<th>NUMÉRO D'ÉQUIPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ACTION</td>
<td>EN RÉSERVE</td>
</tr>
<tr>
<td>EN ATTENTE</td>
<td>EN ACTION</td>
</tr>
<tr>
<td>EN RÉSERVE</td>
<td>EN ATTENTE</td>
</tr>
<tr>
<td>SIGNATURE</td>
<td></td>
</tr>
</tbody>
</table>

DATE :

TEMPS
COMMUNICATION PAR LES MEMBRES DE L'ÉQUIPE

Tous les membres d’une équipe de sauvetage minier doivent faire preuve d’une discipline stricte et obéir à toutes les directives que leur donne le capitaine. La communication principale s'effectue à l'aide d'appareils électroniques, comme des téléphones ou des radios à sécurité intrinsèque, lorsque nécessaire.

Les membres de l'équipe à la surface doivent tous porter des sifflets comme mode de communication secondaire. Dans le cas des équipes souterraines, le capitaine et le vice-capitaine doivent chacun porter un avertisseur, une cloche ou un sifflet ou utiliser d'autres méthodes ou appareils propres au site. Un code de signaux standardisé a été établi.

<table>
<thead>
<tr>
<th>Code de signaux standardisé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un</td>
</tr>
<tr>
<td>Deux</td>
</tr>
<tr>
<td>Trois (détresse)</td>
</tr>
<tr>
<td>Quatre (attention)</td>
</tr>
<tr>
<td>Cinq (reculer)</td>
</tr>
</tbody>
</table>

PROCESSUS DE PRISE DE DÉCISIONS

Les responsabilités associées au sauvetage minier peuvent être très exigeantes. Il se peut que les membres de l'équipe de sauvetage minier soient le premier personnel formé à arriver sur la scène de l'incident. Ils doivent faire ce qui suit :

- Contrôler la scène.
- S'assurer que le PIUM est mis en œuvre.
- Veiller à leur propre sécurité et à celle des autres membres de l'équipe, des victimes et des autres personnes présentes sur les lieux.
- Participer à la désincarcération et aux premiers soins des victimes.
- Combattre les incendies.
- Contrôler les déversements de produits chimiques.

Intervention et analyse de la situation

L’intervention débute lorsqu'une équipe de sauvetage est alertée par suite d'un incident. Elle comprend la circulation sécuritaire en direction de la scène de l'incident et à l'arrivée sur celle-ci, puis le rassemblement et l'utilisation de l'équipement et des véhicules. Parmi les éléments d'une intervention, on compte :

- La préparation : S'assurer que l'équipement, y compris l'EPI, soit à son emplacement désigné et se familiariser avec les installations, les procédures d'intervention et les plans de préparation aux incidents.
La méthode d'alerte/d'avis : Alarmes, radio bidirectionnelle, téléphone, téléavertisseur.
L'établissement de la communication au sein de l'équipe de sauvetage et entre l'équipe et la structure de commandement.
La circulation sécuritaire en direction de l'incident : Ceintures de sécurité, trajet, règles de circulation propres au site, sortie du véhicule.
Arrivée sur la scène :
 o Responsabilité : En vertu de la structure de commandement, être responsable d'abord des membres de l'équipe de sauvetage qui interviennent, puis de l'ensemble du personnel présent sur la scène de l'incident.
 o Agissements indépendants : Le fait d'agir d'une manière indépendante des directives de commandement est inacceptable et ne doit pas être toléré.

Déceler le problème
L'analyse de la situation est un processus systématique de collecte de renseignements et d'évaluation de la situation qui se poursuit tout au long de l'opération. L'analyse de la situation est essentielle pour mener une opération de sauvetage sécuritaire et efficace. Il y a quatre parties à analyser :

1. Les renseignements recueillis lors de l'appel initial :
 o Nature et emplacement de l'urgence;
 o Nombre de personnes/blessés mis en cause;
 o Conditions météorologiques;
 o Moment de la journée;
 o Équipement mis en cause et accès à la scène.

2. Les éléments observés en chemin :
 o Pannes de courant;
 o Fumée dans la direction du lieu de l'urgence;
 o Circulation routière (congestion ou débit inhabituel) et témoins.

3. Les éléments observés sur la scène :
 o Signes de conditions dangereuses observés pendant l'établissement du périmètre;
 o Confirmation des observations ou comparaison de celles-ci avec les renseignements fournis lors de l'appel initial;
 o Dégagements ou déversements de carburant, d'essence ou de produits chimiques;
 o Lieu où se trouvent les victimes;
 o Gestes qui pourraient avoir été posés par les personnes se trouvant déjà sur les lieux.

4. Les renseignements recueillis lors de l'analyse de la situation sont soit factuels (connus ou confirmés), soit probables (hypothèses formulées en fonction de la situation). Par exemple, le dénombrement des personnes présentes sur place en fonction de l'heure serait classifié comme probable.

L'évaluation du danger comprend le décelement et l'évaluation des dangers auxquels l'équipe pourrait faire face pendant l'opération de sauvetage. Parmi ces dangers, on compte ceux qui suivent :

- Feu
- Atmosphères dangereuses (p. ex., dangers chimiques, gaz toxiques, déplacement d'oxygène)
- Sources d'énergie (p. ex., électricité, gaz, énergie nucléaire);
- Dangers physiques (p. ex., structure, circulation automobile, topographie)
- Dangers biologiques
- Dangers environnementaux
- Évaluation de tous les facteurs ayant une influence (p. ex., heure, emplacement, environnement, climat).
Formuler un objectif en fonction des renseignements et des ressources connus
- Déterminer les ressources requises pour accomplir la tâche (p. ex., offensives ou défensives).
- Prendre une décision basée sur le risque en fonction des principes fondamentaux du sauvetage minier.

Sélectionner au moins une solution de rechange aux options offertes
- Établir les priorités en fonction de la tâche et des ressources disponibles.

Prendre les mesures appropriées
- Mener toutes les activités d’une manière qui permet d’assurer la sécurité des membres de l’équipe, des victimes et des personnes présentes sur les lieux.

Analyser les résultats
- Processus continu tout au long de l’intervention.
- Être préparé à choisir une mesure de rechange si les résultats sont insatisfaisants.
ÉQUIPEMENT DE PROTECTION INDIVIDUELLE

Le milieu dans lequel les équipes de sauvetage minier exécutent leurs tâches exige qu'elles aient à leur disponibilité l'équipement de protection individuelle approprié.

Toutefois, le fait de disposer de l'équipement de protection approprié et de l'utiliser ne garantit pas à lui seul la sécurité individuelle. Toutes les composantes de l'équipement de protection ont des limites qui doivent être reconnues afin que les utilisateurs ne posent pas de gestes dépassant leur niveau de protection.

Une formation complète sur les soins, l'utilisation et l'entretien de l'équipement de protection est donc essentielle pour garantir que cet équipement procure une protection optimale. Tous les membres de l'équipe doivent être au courant du type d'équipement nécessaire dans différentes situations, et de l'endroit où trouver celui-ci.

Tout l'équipement utilisé doit respecter les lois, normes et règlements pertinents en matière de santé et de sécurité.

- Protection de la tête
- Protection des yeux et du visage
- Protection de l'ouïe
- Protection des voies respiratoires
- Protection des mains
- Protection des pieds
- Vêtements de protection
- Équipements et outils spécialisés (p. ex., jambières de protection pour utilisation de scie à chaîne, outils de désincarcération)

BASE/ZONE D'AIR FRAIS

Une base/zone d'air frais est un endroit où la circulation d'un bon air respirable a été établie et peut être maintenue indéfiniment. Il s'agit du point de départ de l'équipe de sauvetage minier et personne ne doit sortir de la base/zone d'air frais sans porter de dispositif de protection pour les voies respiratoires.

Lors du choix de la base/zone, il faut prendre en considération les critères suivants :
- Une zone propre avec un bon éclairage;
- Un endroit sécuritaire aussi près de l'incident que possible;
- Un endroit permettant aux équipes de sauvetage minier de tenir les réunions de préparation et de compte rendu;
- Un espace suffisant pour effectuer le travail nécessaire;
- Un espace qui permet d'avoir les outils et les fournitures nécessaires pour effectuer le travail à portée de main.
Dans le cas des bases d'air frais souterraines, les éléments suivants doivent également être pris en considération :
- L’approvisionnement en air frais du chemin reliant la base à la surface doit être assuré en tout temps;
- L’ininteruption de la communication entre la base souterraine et la surface doit être assurée.

PREMIÈRE INTERVENTION RELATIVEMENT AUX MATIÈRES DANGEREUSES

Les membres de l’équipe doivent être compétents quant aux procédures d'intervention propres au site. Dans le cas d’un incident mettant en cause des matières dangereuses, les sauveteurs peuvent se référer aux documents suivants :
- Les fiches signalétiques de sécurité de produit ou fiches de référence fournies par le fabricant pour tous les produits sur place
- Le CANUTEC (Centre canadien d’urgence transport, un service de consultation national relativement aux interventions d'urgence, accessible 24 heures par jour) et le WISER (Wireless Information System for Emergency Responders)
- Expertise sur place

STRESS PHYSIQUE/ÉMOTIONNEL LORS D’INCIDENTS CRITIQUES

Un incident critique est un événement qui va au-delà de l’expérience humaine habituelle et qui est psychologiquement traumatisant pour la personne.

Des incidents critiques peuvent entraîner une vaste gamme de réactions au stress pouvant se produire immédiatement sur la scène, quelques heures après l’intervention ou dans les quelques jours suivant l’événement. En général, les réactions au stress se produisent dans l’une des quatre catégories suivantes :
- Cognitif (pensée)
- Physique (corps)
- Émotionnelle (émotions)
- Comportementale (gestes)
Plus une personne a de réactions, plus l’impact est important sur elle. Plus les réactions durent longtemps, plus le risque potentiel de dommage permanent est présent. Le stress peut causer une grande variété de réactions :

<table>
<thead>
<tr>
<th>Catégorie de réactions</th>
<th>Symptômes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>Manque de concentration</td>
</tr>
<tr>
<td></td>
<td>Problèmes de mémoire</td>
</tr>
<tr>
<td></td>
<td>Capacité d’attention réduite</td>
</tr>
<tr>
<td></td>
<td>Difficulté à effectuer des calculs</td>
</tr>
<tr>
<td></td>
<td>Indécision</td>
</tr>
<tr>
<td></td>
<td>Capacité de résolution de problèmes raientie</td>
</tr>
<tr>
<td>Émotionnel</td>
<td>Perte du contrôle émotionnel</td>
</tr>
<tr>
<td></td>
<td>Sentiment d’être perdu ou dépassé</td>
</tr>
<tr>
<td></td>
<td>Dépression</td>
</tr>
<tr>
<td></td>
<td>Anxiété/peur</td>
</tr>
<tr>
<td></td>
<td>Culpabilité</td>
</tr>
<tr>
<td></td>
<td>Chagrin</td>
</tr>
<tr>
<td>Physique</td>
<td>Tremblements musculaires</td>
</tr>
<tr>
<td></td>
<td>Douleurs à la poitrine</td>
</tr>
<tr>
<td></td>
<td>Détresse gastro-intestinale</td>
</tr>
<tr>
<td></td>
<td>Difficulté à respirer</td>
</tr>
<tr>
<td></td>
<td>Maux de tête</td>
</tr>
<tr>
<td></td>
<td>Pression sanguine élevée</td>
</tr>
<tr>
<td>Comportemental</td>
<td>Silence excessif</td>
</tr>
<tr>
<td></td>
<td>Comportement atypique</td>
</tr>
<tr>
<td></td>
<td>Évitement des contacts</td>
</tr>
<tr>
<td></td>
<td>Troubles du sommeil</td>
</tr>
<tr>
<td></td>
<td>Changements des habitudes alimentaires</td>
</tr>
<tr>
<td></td>
<td>Changements des habitudes de travail</td>
</tr>
</tbody>
</table>

Ces conditions sont le résultat des effets du système de réaction chimique du corps à l’urgence.

Une fois l’intervention de sauvetage minier d’urgence terminée, les équipes de sauvetage minier doivent tenir une réunion de compte rendu. Une séance de verbalisation suivant un incident critique (SVIC) ou d’autres procédures de conseil doivent être tenues avec l’ensemble du personnel directement mis en cause dans un incident critique. La séance de compte rendu doit être tenue immédiatement au terme de l’intervention d’urgence et être dirigée par des professionnels qualifiés.
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 3 Conditions environnementales
OBJECTIFS

Les équipes de sauvetage minier doivent être au courant des dangers particuliers associés aux conditions environnementales. Ce chapitre permettra d'acquérir une compréhension de base de ce qui suit :

- Les termes, concepts et équipements associés aux avalanches
- La circulation sur la glace
- Le stress thermique

CONCEPTS ET DÉFINITIONS

Les mines exploitées dans des zones exposées aux avalanches doivent établir un plan d'intervention d'urgence en cas d'avalanche adapté à leur mine. Il se peut que le personnel de sauvetage minier doive procéder à des activités d'intervention en cas d'urgence qui l'expose aux dangers d'une avalanche. Ce chapitre ne vise qu'à fournir une sensibilisation de base aux avalanches.

Il faut nommer un responsable de sécurité en cas d'avalanche compétent. Dans une situation d'avalanche active, il faut le consulter et lui permettre de diriger l'intervention d'urgence en toute sécurité. Le responsable de sécurité en cas d'avalanche doit procéder à une évaluation des risques d'avalanche et établir des mesures de sécurité en cas d'avalanche active avant de planifier les opérations d'urgence.

Une avalanche est un mouvement rapide de neige descendant une surface en pente et pouvant se produire à tout moment, lorsque les conditions propices sont présentes. Les avalanches peuvent être divisées en trois zones principales :

- **Zone de départ** (point d'origine) : Il s'agit de l'endroit d'où la neige instable s'est d'abord détachée. Un couloir d'avalanche peut avoir plusieurs zones de départ. Parmi les caractéristiques d'une zone de départ, on compte l'inclinaison, l'aspect en pente, l'exposition au vent, l'élévation, l'exposition au soleil et les conditions naturelles du sol.
- **Zone d'écoulement** (zone de transit) : Il s'agit de l'endroit situé sous la zone de départ, où l'avalanche accélère et atteint habituellement son potentiel destructeur optimal. Il se peut que l'avalanche passe par-dessus des éléments topographiques et des zones d'écoulement d'avalanches précédentes. Les zones d'avalanche peuvent contenir une ou plusieurs zones d'écoulement. Celles-ci peuvent être clairement définies ou non.
- **Zone de dépôt** : Il s'agit de l'endroit où l'avalanche ralentit et s'arrête finalement. Pour la reconnaître, il suffit de chercher l'endroit où la masse de neige s'accumule.

Les avalanches peuvent se produire en tout temps en la présence des conditions suivantes :

- Des éléments géographiques, comme la topographie naturelle de la région, les formes de relief aménagées et l'orientation des pentes.
- L'accumulation de neige sur une pente allant de modérée à escarpée (30° à 45°). Les avalanches débutent rarement sur les pentes plus escarpées que 45°, puisque la neige s'en détache continuellement.
plutôt que de s’accumuler.

- Des conditions d’enneigement, comme :
 - Une accumulation de neige;
 - Masse
 - Couches de neige et liage entre les couches de façette
 - Des effets environnementaux : variation de la température, de la pluie, de la neige, etc.

- Des événements externes qui causent le glissement. Parmi ceux-ci, il y a :
 - Les événements naturels : Nouvelle neige, neige transportée (vent), changements de température, soleil, pluie, fonte et animaux;
 - Les événements humains : Explosifs, travaux sur une pente, travaux sous une pente, équipements mobiles et activités récréatives;
 - Les points de déclenchement : Les conditions d’enneigement, les accumulations de neige dans des endroits peu profonds ou à profondeur variable, et les points de faiblesse (p. ex., arbres, affleurements rocheux) peuvent tous contribuer à l’établissement de conditions propices aux avalanches.

Il existe deux types d’avalanches généralement reconnus :

Les avalanches de neige sans cohésion peuvent se composer de neige poudreuse sèche ou de neige mouillée. Les avalanches de neige sèche sont plus fréquentes en hiver après des tempêtes, et sont rares au printemps ou en été. Les avalanches de neige mouillée sont composées de neige lourde, mouillée, chauffée par le soleil ou pourrie par la pluie, ou encore de nouvelle neige mouillée. Elles sont plus fréquentes au printemps et en été, particulièrement sur les pentes orientées vers le sud. Ces avalanches :
 - partent d’un point;
 - sont mises en mouvement progressivement;
 - nécessitent de la neige à faible cohésion, ayant un peu la texture du sable sec;
 - n’impliquent habituellement que les couches de surface et sont ainsi relativement petites.

Les avalanches de plaques se produisent lorsqu’une plaque de couches de neige plutôt cohésives, faiblement liées à la neige se trouvant sous elles, se détache le long d’une ligne de fracture. Ces avalanches sont de loin les plus dangereuses. Elles sont mises en mouvement simultanément, sur une grande zone et peuvent débuter dans des couches de neige superficielles ou profondes.
Sécurité dans les zones d'avalanche

Le sauvetage réussi d'une personne ensevelie par une avalanche dépend très souvent des gestes posés par les survivants qui n'ont pas été ensevelis. Les membres des équipes menant des opérations de sauvetage dans une zone d'avalanche doivent être mentalement préparés à la possibilité d'être eux-mêmes victimes d'une avalanche.

S'il n'est pas possible d'éviter de croiser une zone d'écoulement d'avalanche, il convient de prendre les précautions suivantes :

- Choisir le trajet le plus court possible en hauteur sur la pente ou dans le bas de la zone de dépôt.
- Prévoir un trajet d'évacuation.
- Porter des mitaines et des chapeaux. Serrer les vêtements et les petits sacs. Desserrer les gros sacs au cas où ils devraient être retirés rapidement.
- Nommer un observateur dans les portions supérieure et inférieure du trajet et s'entendre sur un signal d'avertissement.
- Se déplacer rapidement. Si le passage est étroit, ne permettre qu'à une seule personne de passer à la fois. Autrement, garder un espace entre les sauveteurs afin de minimiser le risque d'exposition à la zone d'écoulement.
ÉQUIPEMENT DE SAUVETAGE EN CAS D'AVALANCHE

Sonde, appareil de recherche de victime d'avalanche (détecteur) et pelle : Ces trois objets sont efficaces ensemble et constituent l'équipement minimum requis pour chaque sauveteur en situation d'avalanche. Pour connaître la bonne utilisation de l'équipement de sauvetage en cas d'avalanche, consultez les directives du fabricant.

CIRCULATION SUR LA GLACE

Certaines exploitations minières situées dans des régions nordiques éloignées sont accessibles par des routes de glace bâties sur des lacs ou des rivières glacées.

Avant la circulation sur la glace
L'épaisseur de la glace doit être vérifiée fréquemment et dans différents endroits. La plus petite épaisseur est utilisée pour déterminer la solidité de la glace. Le tableau ci-dessous indique le poids que différentes épaisseurs de glace lacustre bleue et claire supporteront, à condition que la charge demeure en mouvement.

- Type de glace :
 - Rivière ou lac (mouvement d'eau sous la glace). La glace fluviale bleue et claire, avec mouvement d'eau en dessous, n'est pas aussi solide que la glace lacustre. Il convient de réduire les charges d'au moins 15 %.
 - Glace claire ou naturelle (teinte noire ou bleue). Cette forme de glace est considérée comme la plus solide.
 - La bouillie de glace (teinte blanche) est de la neige saturée d'eau. On la retrouve fréquemment comme nouvelle glace flottante après une chute de neige abondante. Cette glace est beaucoup moins résistante que la glace lacustre bleue et claire.
- Des fissures dans la glace peuvent affecter sa capacité à supporter une charge.

Pendant la circulation sur la glace
- Lorsqu'un véhicule circule sur de la glace, il crée une onde de résonance dans l'eau sous-jacente. Le poids et la vitesse du véhicule, ainsi que la profondeur de l'eau, ont une influence sur la taille et la vitesse de l'onde. L'onde de résonance peut affecter la solidité de la glace, ce qui peut causer un éclatement ou une rupture de la glace.
- Sauf indications contraires, la limite de vitesse sur des routes de glace est de 25 km/h pour un véhicule chargé et de 35 km/h pour un véhicule vide.
Le tableau ci-dessous présente la masse maximale admissible pour un véhicule circulant sur de la glace de différentes épaisseurs. La Formule de Gold pour déterminer la masse maximale admissible est la suivante :

\[M = 4 \times h^2 \]

Dans cette formule, \(M \) désigne la masse du véhicule (kg) et \(h \), l’épaisseur de la glace (cm).

<table>
<thead>
<tr>
<th>Épaisseur de la glace (cm)</th>
<th>Capacité (kg)</th>
<th>Épaisseur de la glace (cm)</th>
<th>Capacité (kg)</th>
<th>Épaisseur de la glace (cm)</th>
<th>Capacité (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>25</td>
<td>37,5</td>
<td>5 625</td>
<td>75</td>
<td>22 500</td>
</tr>
<tr>
<td>3,5</td>
<td>49</td>
<td>40</td>
<td>6 400</td>
<td>77,5</td>
<td>24 025</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>42,5</td>
<td>7 225</td>
<td>80</td>
<td>25 600</td>
</tr>
<tr>
<td>7,5</td>
<td>225</td>
<td>45</td>
<td>8 100</td>
<td>82,5</td>
<td>27 225</td>
</tr>
<tr>
<td>10</td>
<td>400</td>
<td>47,5</td>
<td>9 025</td>
<td>85</td>
<td>28 900</td>
</tr>
<tr>
<td>12,5</td>
<td>625</td>
<td>50</td>
<td>10 000</td>
<td>87,5</td>
<td>30 625</td>
</tr>
<tr>
<td>15</td>
<td>900</td>
<td>52,5</td>
<td>11 025</td>
<td>90</td>
<td>32 400</td>
</tr>
<tr>
<td>17,5</td>
<td>1 225</td>
<td>55</td>
<td>12 100</td>
<td>92,5</td>
<td>34 225</td>
</tr>
<tr>
<td>20</td>
<td>1 600</td>
<td>57,5</td>
<td>13 225</td>
<td>95</td>
<td>36 100</td>
</tr>
<tr>
<td>22,5</td>
<td>2 025</td>
<td>60</td>
<td>14 400</td>
<td>97,5</td>
<td>38 025</td>
</tr>
<tr>
<td>25</td>
<td>2 500</td>
<td>62,5</td>
<td>15 625</td>
<td>100</td>
<td>40 000</td>
</tr>
<tr>
<td>27,5</td>
<td>3 025</td>
<td>65</td>
<td>16 900</td>
<td>102,5</td>
<td>42 025</td>
</tr>
<tr>
<td>30</td>
<td>3 600</td>
<td>67,5</td>
<td>18 225</td>
<td>105</td>
<td>44 100</td>
</tr>
<tr>
<td>32,5</td>
<td>4 225</td>
<td>70</td>
<td>19 600</td>
<td>107,5</td>
<td>46 225</td>
</tr>
<tr>
<td>35</td>
<td>4 900</td>
<td>72,5</td>
<td>21 025</td>
<td>110</td>
<td>48 400</td>
</tr>
</tbody>
</table>
STRESS THERMIQUE

Le stress thermique fait référence à une gamme de réactions physiologiques à des conditions de température défavorables.Plusieurs facteurs contribuent à ce stress. Les sauveteurs miniers doivent être en mesure de reconnaître les conditions suivantes et d'intervenir comme il se doit.

L'hypothermie est une condition qui survient lorsque la température interne du corps chute (maladie d'exposition). Le fait de ne pas déceler les symptômes de l'hypothermie est la première cause de décès des personnes en plein air.

L'hypothermie est causée par la surexposition à un environnement froid et peut survenir très rapidement si les précautions adéquates ne sont pas prises. L'hypothermie résulte du refroidissement corporel causé par le froid, le vent ou l'eau, de manière telle que le corps perd sa chaleur plus rapidement qu'il ne peut en produire.

Voici quelques-uns des facteurs contribuant à l'hypothermie :
- Vêtements inadéquats
- Présence d'alcool ou drogue dans le corps
- Fait d'être mouillé (transpiration, pluie)
- Épuisement, déshydratation et malnutrition
- Vent et eau
- Température
- Durée d'exposition

<table>
<thead>
<tr>
<th>Hypothermie et immersion dans l'eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si la température de l'eau (Celsius) est de...</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>De 1 à 5</td>
</tr>
<tr>
<td>De 5 à 10</td>
</tr>
<tr>
<td>De 10 à 15</td>
</tr>
<tr>
<td>De 15 à 20</td>
</tr>
<tr>
<td>De 20 à 25</td>
</tr>
<tr>
<td>De 25 à 30</td>
</tr>
</tbody>
</table>
Symptômes d’hypothermie
Des symptômes visibles indiquent le début de l’hypothermie dont la progression est marquée par des étapes reconnaissables.

<table>
<thead>
<tr>
<th>Étape</th>
<th>Température du corps (°Celsius)</th>
<th>Signes et symptômes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermie légère</td>
<td>37,2 à 36,1</td>
<td>État normal; les frissons peuvent apparaître.</td>
</tr>
<tr>
<td></td>
<td>36,1 à 35,0</td>
<td>Sensation de froid, chair de poule, incapacité d’exécuter des tâches complexes avec les mains, frissons variant de légers à intenses, engourdissement des mains.</td>
</tr>
<tr>
<td>Hypothermie modérée</td>
<td>35,0 à 33,9</td>
<td>Frissons intenses, incoordination apparente, mouvements lents et pénibles, démarche hésitante, légère confusion, vigilance apparente. Si la personne soumise à un test de sobriété est incapable de marcher droit sur une distance de 9 mètres (30 pieds), c’est qu’elle souffre d’hypothermie.</td>
</tr>
<tr>
<td></td>
<td>33,9 à 32,2</td>
<td>Frissons intenses persistants, difficultés d’élocution, pensée lente, début d’amnésie, motricité grossière ralentie, incapacité d’utiliser les mains, trêbuchements fréquents, signes de dépression, repli sur soi.</td>
</tr>
<tr>
<td>Hypothermie sévère</td>
<td>32,2 à 30,0</td>
<td>Fin des frissons, peau exposée bleue ou bouffie, très mauvaise coordination musculaire, incapacité de marcher, confusion, comportement incohérent ou irrationnel, mais maintien de la posture et apparence de vigilance.</td>
</tr>
<tr>
<td></td>
<td>30,0 à 27,8</td>
<td>Rigidité musculaire, semi-conscience, stupeur, inconscience de la présence d’autres personnes, baisse du pouls et de la fréquence respiratoire, possibilité de fibrillation cardiaque.</td>
</tr>
<tr>
<td></td>
<td>27,8 à 25,6</td>
<td>Évanouissement, fréquence cardiaque et respiration irrégulières; le pouls peut être impossible à déceler.</td>
</tr>
<tr>
<td></td>
<td>25,6 à 23,9</td>
<td>Édème pulmonaire, insuffisance cardiaque et respiratoire, mort. La mort peut survenir avant que cette température soit atteinte.</td>
</tr>
</tbody>
</table>

Perte de chaleur corporelle
La tête et le cou sont les zones par lesquelles la chaleur s’échappe le plus rapidement. D’autres parties du corps présentent des taux de perte de chaleur élevés lorsqu’une personne est immobile dans de l’eau froide. Des images infrarouges indiquent que les côtés de la poitrine, où il y a peu de muscle ou de gras, sont les principales zones de perte de chaleur de la cavité thoracique chaude. La région de l’aïne perd également beaucoup de chaleur en raison de la présence de gros vaisseaux sanguins près de la surface. Si des efforts sont déployés en vue de conserver la chaleur corporelle, une attention particulière doit être portée à ces régions.

Figure 3.2 : Cette image infrarouge d’un corps présente les régions à chaleur élevée (rouge) et les régions à chaleur faible (bleu).
Techniques de survie en eau froide
Les sauveteurs miniers qui travaillent à proximité de l'eau doivent porter des vêtements de flottaison individuels (VFI). L'hypothermie débute beaucoup plus rapidement chez les personnes immergées dans l'eau froide. Les deux techniques suivantes peuvent prolonger les temps de survie :

La position fœtale
Cette technique de survie en eau froide protège les parties du corps qui perdent de la chaleur le plus rapidement. Elle augmente le temps de survie prédit de plus de 50%. Cette position nécessite un vêtement de flottaison qui assure la flottabilité du haut du corps.

La position caucus
Le temps de survie prédit peut être augmenté jusqu'à 50% si les survivants se placent ainsi. Dans cette position, les côtés des thorax des survivants sont maintenus les uns contre les autres pour prévenir la perte de chaleur.

Dans l'eau froide (moins de 10 °C), une personne normale ne peut pas nager plus du dixième de la distance qu'elle peut effectuer dans de l'eau chaude.
Conditions de stress dû au froid
L'exposition à des environnements froids ou à de l'eau froide pendant une période prolongée peut entraîner un certain nombre de conditions défavorables. Plus particulièrement, pendant les mois d'hiver, il convient de prendre des précautions afin d'éviter ces conditions lors de sauvetages miniers.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Symptômes (peuvent être présents ou non)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engelures</td>
<td>• Exposition répétée et prolongée (plusieurs heures) à une température de l'air comprise entre le point de congélation (0 °C) et une température pouvant atteindre 16 °C.</td>
<td>• Sur la peau touchée, on pourra observer une rougeur, une tuméfaction, une sensation de picotement et de la douleur.</td>
</tr>
<tr>
<td>Gelures superficielles</td>
<td>• Les lobes des oreilles, le nez, les joues, les doigts ou les orteils sont exposés au froid et les couches superficielles de la peau gèlent.</td>
<td>• La peau touchée blanchit et peut paraître engourdie. • La couche superficielle de la peau peut sembler dure, mais les couches profondes paraissent normales (molles).</td>
</tr>
<tr>
<td>Gelures</td>
<td>• Les gelures sont provoquées par l'exposition au froid extrême ou le contact avec des objets extrêmement froids, particulièrement ceux faits de métal. Elles peuvent aussi se produire à des températures normales par suite d'un contact avec des gaz réfrigérés ou comprimés. • Les gelures se produisent lorsque la température du tissu descend sous le point de congélation ou lorsque la circulation sanguine est obstruée.</td>
<td>• Cas légers : Inflammation de la peau par plaques accompagnée de douleur légère. • Cas graves : Dommage aux tissus sans douleur ou possibles sensations de brûlure ou de picotement causant des cloques. • Les vaisseaux sanguins peuvent être endommagés gravement ou de façon permanente, et la circulation sanguine peut être interrompue dans la région atteinte. • La peau souffrant de gelures est plus sensible aux infections, et la gangrène (mort locale de tissus mous causée par la perte d'afflux sanguin) peut apparaître.</td>
</tr>
<tr>
<td>Pied d'immersion/pied des tranchées</td>
<td>• Se produit lorsque les pieds ont été mouillés, sans toutefois être gelés, pendant des périodes prolongées. • Peut se produire à des températures allant jusqu'à 10 °C. • Le pied des tranchées est plus susceptible de se produire à des températures inférieures. • Le pied d'immersion est plus susceptible de se produire à des températures supérieures et lorsque les temps d'exposition sont plus longs. • Les mains peuvent être affectées si une personne porte des gants mouillés pour une période prolongée dans des conditions froides.</td>
<td>• Picotement et engourdissement. • Démangeaisons, douleur ou tuméfaction des jambes, des pieds ou des mains • Cloques • Peau devenant rouge, puis bleue ou mauve. • Développement possible de gangrène.</td>
</tr>
</tbody>
</table>
Conditions de stress dû à la chaleur

Comme pour les conditions de stress dû au froid, la sévérité des conditions de stress dû à la chaleur dépend de la durée et de l’intensité de l’exposition et de l’activité, ainsi que de la condition physique et la santé de la personne.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Symptômes (peuvent être présents ou non)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éruption miliaire</td>
<td>• Environnement chaud et humide.</td>
<td>• Éruption irrégulière rouge avec démangeaison sévère.</td>
</tr>
<tr>
<td></td>
<td>• Glandes sudoripares obstruées.</td>
<td></td>
</tr>
<tr>
<td>Crampes de chaleur</td>
<td>• La forte sudation causée par une activité physique intense draine les fluides et le sel du corps d’une personne.</td>
<td>• Des crampes douloureuses se produisent dans les muscles les plus fréquemment sollicités (bras, jambes, abdominaux).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ces crampes peuvent débuter subitement ou après un certain temps.</td>
</tr>
<tr>
<td>Syncope due à la chaleur</td>
<td>• Perte de fluides.</td>
<td>• Évanouissement soudain après au moins deux heures de travail.</td>
</tr>
<tr>
<td>(évanouissement)</td>
<td>• Consommation d’eau inadéquate.</td>
<td>• Peau fraîche et humide</td>
</tr>
<tr>
<td></td>
<td>• Fait de demeurer debout, ce qui entraîne une diminution de la circulation sanguine vers le cerveau.</td>
<td>• Pouls faible</td>
</tr>
<tr>
<td>Épuisement dû à la chaleur</td>
<td>• La perte de fluides et la consommation inadéquate de sel et d’eau entraînent l’interruption de la fonction de refroidissement du corps.</td>
<td>• Transpiration abondante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peau fraîche et humide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Température corporelle élevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pouls faible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pression sanguine normale ou faible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fatigue, faiblesse, nausée et vomissement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Soif.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Halètement ou respiration rapide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vision brouillée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Étoffissement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ëdème.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sensation de tête légère.</td>
</tr>
<tr>
<td>Coup de chaleur</td>
<td>• Si le corps d’une personne a utilisé toutes ses réserves d’eau et de sel, il cessera de transpirer. Ce phénomène peut hauser la température du corps.</td>
<td>• Température corporelle élevée (supérieure à 41 °C).</td>
</tr>
<tr>
<td></td>
<td>• Un coup de chaleur peut survenir subitement ou à la suite d’un épuisement dû à la chaleur.</td>
<td>• Tous ces facteurs peuvent indiquer un coup de chaleur :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Peau chaude, sèche et rouge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Faiblesse, confusion, bouleversement ou comportement étrange.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Peau chaude, sèche et rouge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Pouls rapide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Mal de tête ou étoffissement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dans les stades ultérieurs, la personne peut s’évanouir et avoir des convulsions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Respiration rapide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Absence de transpiration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Choc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arrêt cardiaque.</td>
</tr>
</tbody>
</table>
Le refroidissement éolien est la diminution de la température de l'air ressentie par le corps sur la peau exposée au vent. Il doit être pris en considération à titre de danger supplémentaire lorsqu'on travaille dans des environnements froids. Le tableau de refroidissement éolien doit être affiché à l'endroit où l'anémomètre et le thermographe sont installés.
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 4 Risques électriques
OBJECTIFS

Ce chapitre vise à informer et à protéger les sauveteurs qui sont appelés à intervenir dans le cadre de situations d’urgence mettant en cause des systèmes électriques. Au terme de ce chapitre, l’apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- Les concepts et définitions;
- Les blessures causées par l’électrocution et facteurs ayant une incidence sur la gravité;
- Les considérations spéciales pour les situations d’urgence mettant en cause de l’équipement électrique;
- Les lignes directrices pour intervenir dans des situations d’urgence mettant en cause de l’équipement électrique.

Introduction

L’utilisation généralisée de l’énergie électrique, soutenue par un vaste réseau de fils sous tension, a entraîné plusieurs blessures et décès causés par l’exposition à l’électricité. Plusieurs facteurs influencent la gravité des blessures électriques. Bien que de hautes tensions et des intensités élevées soient dangereuses, le contact avec de basses tensions peut également être fatal. De plus, l’humidité à la surface de la peau diminue la résistance du corps et augmente la gravité de la blessure, alors qu’une isolation partielle à l’aide de vêtements secs atténue l’effet. Aussi, une électrocution dans les hauteurs peut entraîner une chute qui peut blesser davantage la victime.

Installations électriques

L’électricité est produite par des centrales électriques. Cette tension est élevée afin d’en assurer le transport efficace sur de longues distances, vers des postes électriques situés à proximité des centres de distribution. Les lignes de transport fonctionnent entre 69 000 et 500 000 volts.

Aux postes électriques, la tension est réduite et l’énergie est acheminée par des lignes de transport jusqu’aux clients industriels, commerciaux et résidentiels. Ces lignes transportent entre 5 000 et 25 000 volts.

Certaines mines, particulièrement celles situées à des endroits éloignés, ont leurs propres installations de production d’énergie sur place. Ces installations provoquent des circonstances uniques lors de situations d’urgence.

CONCEPTS ET DÉFINITIONS

La tension est la différence de potentiel électrique entre deux points d’un champ électrique. Il s’agit de la force qui crée le flux d’électricité. On la mesure en volts (V). Étant donné que les mines ont besoin de tensions élevées, on utilise souvent les kilovolts (kV; 1 kV = 1 000 V) pour exprimer la différence de potentiel électrique.

Le courant est un flux de charge électrique. On peut le comparer au débit d’eau dans un tuyau. On mesure habituellement le courant en ampères (A). (1 ampère = 1 000 milliampères [mA]).

- Le courant alternatif (CA) fait référence à un courant dont la direction est inversée 60 fois par seconde (60 Hz).
- Le courant continu (CC) fait référence à un courant circulant uniquement du positif au négatif.
La résistance est semblable à l'effet de friction du débit d'eau dans un tuyau. L'eau circule plus librement dans un gros tuyau que dans un petit tuyau, et différents matériaux ont différentes résistances au flux d'électricité. On mesure la résistance en ohms (Ω).

La mise à la terre est le processus consistant à relier mécaniquement des fils et de l'équipement isolés à la terre, avec une capacité suffisante pour transporter le courant de défaut et pour veiller à ce que les fils et l'équipement demeurent au même potentiel (tension) que le sol (la terre).

La métallisation est le processus consistant à relier deux conducteurs qui ne transportent pas de courant. Ceux-ci peuvent être deux fils, un fil et un tuyau ou encore deux pièces d'équipement. La métallisation se fait en reliant toutes les parties métalliques qui ne sont pas supposées transporter du courant lors des opérations normales, ce qui les porte ainsi au même potentiel électrique. Néanmoins, la mise à la terre est requise après la métallisation puisque la métallisation en tant que telle ne protège aucun élément.

Les isolants sont des matériaux de forte résistance qui conduisent l'électricité en des quantités si petites qu'elles ne sont normalement pas détectées. Parmi les isolants, on compte le verre, la céramique et la porcelaine.

Les conducteurs sont des matériaux de faible résistance qui conduisent l'électricité en grandes quantités. Parmi les conducteurs, on compte le cuivre, l'aluminium, le fer, l'eau salée (la saumure) et d'autres métaux.

Les semiconducteurs sont des matériaux ayant une valeur de résistance située entre celle des isolants et celle des conducteurs. Parmi les semiconducteurs, on compte le bois, la terre et les pneus de caoutchouc.

Production d'arc électrique : Un arc électrique est une libération soudaine d'énergie électrique qui comble l'écart entre deux conducteurs. Un arc peut être extrêmement chaud. La production d'arc électrique est normalement associée à un court-circuit, à une interruption de courant à un point de commutation ou à une borne desserrée.

Surchauffe : Des connexions desserrées et des conducteurs ou des moteurs électriques surchargés causent la surchauffe. Le dépassement de la quantité de courant que peuvent transporter des conducteurs et de l'équipement est dangereux et peut être évité en utilisant des dispositifs adéquats de protection contre les courts-circuits et les surcharges.

Basse tension : La majorité des incendies de cause électrique sont provoqués par de l'équipement fonctionnant à moins de 750 V. Dans le secteur de l'électricité, tout ce qui se trouve sous la barre des 750 V est fréquemment considéré comme offrant une basse tension ou une tension induite.

Haute tension : L'électricité peut se déplacer par les airs jusqu'à une personne, un outil ou un autre conducteur si celui-ci s'approche trop. Tous les sauveteurs, les outils et l'équipement, y compris les dispositifs aériens et les échelles à coulisses, doivent demeurer à une distance minimale connue sous le nom de limite d'approche sécuritaire.
Gradient de tension à la terre
Comme l'électricité cherche toujours le chemin présentant la résistance la plus faible pour se rendre à la terre, les systèmes électriques utilisent des tiges conductrices de mise à la terre pour s'assurer que tout courant vagabond est retourné à la terre d'une manière sécuritaire. Ces tiges sont insérées à au moins 2,5 m (8 pi) dans la terre afin de veiller au bon contact avec la terre. Par contre, si l'électricité est relâchée à la surface, comme lorsqu'un fil « sous tension » repose sur le sol, l'électricité se dispersera à partir du point de contact.

Lors d'un défaut à la terre, il y a un effet d'ondulation qui s'apparente à l'effet d'un caillou qu'on laisser tomber dans une eau calme. Dans la piscine remplie d'eau, l'onde créée au point de contact devient de moins en moins grande au fur et à mesure qu'elle se diffuse vers l'extérieur. De la même manière, dans une « piscine » d'électricité, l'énergie est à une tension intégrale de système au point de contact avec la terre, mais au fur et à mesure qu'on s'éloigne du point de contact, la tension chute progressivement. Cet effet est connu sous le nom de gradient à la terre.

Tension de pas et tension de contact
Le gradient à la terre, ou chute de tension, crée deux problèmes : la tension de pas et la tension de contact.

Supposons qu'un fil sous tension est tombé au sol et a créé une piscine d'électricité. Si un de vos pieds se trouve à proximité du point de contact à la terre (sous tension x) et que votre autre pied se trouve un pas plus loin (à la tension y), la différence de tension fera circuler l'électricité à travers votre corps. Cet effet s'appelle la tension de pas.

Si les sauveteurs se trouvent à l'intérieur d'un gradient à la terre, ils doivent en sortir en toute sécurité. Pour ce faire, ils doivent garder les deux pieds ensemble et sauter ou marcher d'un pas traînant à l'extérieur de la zone affectée. Lorsqu'un sauveteur marche d'un pas traînant, il doit s'assurer que ses deux pieds sont toujours en contact.
De la même manière, l'électricité circulera à travers le corps si celui-ci touche une source sous tension avec les mains, mais que les pieds se trouvent à une certaine distance de la source. La différence entre la tension potentielle dans ce cas s'appelle la tension de contact.
BLESSURES CAUSÉES PAR DES DÉCHARGES ET DES ÉLECTROCUTIONS

AVERTISSEMENT : L’électricité cherche toujours à emprunter le chemin le plus facile pour se rendre au sol. Les personnes qui se placent entre deux conducteurs sous tension, ou entre tout conducteur sous tension et la terre, deviendront une partie d'un circuit électrique pouvant les tuer ou leur causer des blessures graves.

Effets de l'électricité sur le corps

Le chemin qu'emprunte l'électricité à travers le corps est un élément critique. Par exemple, le courant qui passe à travers le cœur ou le cerveau constitue davantage un danger de mort que le courant qui passe à travers les doigts. Les effets anticipés d'une simple fraction de ce courant pendant quelques secondes sont présentés ci-dessous.

<table>
<thead>
<tr>
<th>Niveau de courant (milliampères)</th>
<th>Effet probable sur le corps humain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>Légère sensation de fourmillement.</td>
</tr>
<tr>
<td>5 mA</td>
<td>Légère décharge ressentie; non douloureuse, mais dérangeante. La plupart des personnes peuvent relâcher ce qu'elles touchent. Par contre, de fortes réactions involontaires aux décharges de cette gamme peuvent entraîner des blessures.</td>
</tr>
<tr>
<td>De 6 mA à 16 mA</td>
<td>Décharge douloureuse, début de perte de contrôle musculaire. Communément appelé le courant de contraction ou la gamme « Impossible de relâcher ».</td>
</tr>
<tr>
<td>De 17 mA à 99 mA</td>
<td>Douleur extrême, arrêt respiratoire, contractions musculaires sévères. Possibilité de fracture. La personne ne peut pas relâcher ce qu'elle tient. Possibilité de mort.</td>
</tr>
<tr>
<td>De 100mA à 2000mA</td>
<td>Fibrillation ventriculaire (pompage irrégulier et anarchique du cœur). Début de la contraction musculaire et des lésions des nerfs. Brûlures. Mort probable.</td>
</tr>
<tr>
<td>Plus de 2 000 mA</td>
<td>Arrêt cardiaque, lésions des organes internes et brûlures graves. Mort probable.</td>
</tr>
</tbody>
</table>

Tous les risques électriques doivent faire l'objet d'un contrôle avant que toute personne puisse approcher une personne blessée. Les victimes soumises à l'action d'énergie électrique ont besoin d’un traitement médical rapide et approprié.

Facteurs ayant une incidence sur la gravité d'une blessure

C'est le courant (intensité) qui cause la mort ou des blessures. Par contre, la tension, qui pousse le courant à travers le corps, a également un effet important. Les personnes exposées aux tensions résidentielles peuvent souffrir d'un spasme musculaire et demeurer « collées » à la source d'électricité jusqu'à ce que le courant soit éteint ou qu'elles en soient éloignées par le poids de leur corps qui tombe en direction opposée au point de contact. De longues périodes de contact avec un courant à tension faible entraînent plusieurs décès par causes électriques.

À des tensions très élevées, comme celles véhiculées par les lignes électriques, la victime est habituellement soufflée rapidement en direction opposée au circuit. La victime souffre ainsi de moins de lésions internes, comme l'insuffisance cardiaque, mais a de sérieuses brûlures superficielles à l'endroit où le courant entre et sort du corps. L'exposition à un gros arc électrique peut entraîner des blessures...
causées par la chaleur intense ou par des rayons ultraviolets, ce qui peut provoquer de sérieuses lésions aux yeux.

CONSIDÉRATIONS PARTICULIÈRES POUR LES SITUATIONS D’URGENCE ÉLECTRIQUE

Matières combustibles
Les incendies mettant en cause de l’équipement électrique sont souvent causés par la présence de matières combustibles. Par exemple, la plupart des incendies qui se déclarent dans des centrales électriques prennent naissance dans des systèmes d’alimentation, des systèmes à l’huile, des atmosphères où il y a présence de gaz inflammable, des endroits où il y a des poussières combustibles ou des déchets accumulés, ou dans des bâtiments faits de matériaux combustibles.

Équipement électrique défectueux
L’électricité est sécuritaire dans des conditions de fonctionnement normal. Par contre, des dangers se présentent lorsque l’équipement ou des fils électriques sont défectueux en raison de ce qui suit :
- Usure ou autre détérioration
- Mauvaise installation
- Entretien inadéquat
- Mauvaise utilisation
- Dommages ou rupture
- Éclair

N’importe lequel de ces facteurs peut causer un arc électrique ou la surchauffe de l’équipement électrique.

Incendies de poste électrique et de réseau de production
Les postes électriques et réseaux de production contiennent des transformateurs, de grandes quantités d’huile, de l’équipement électrique sous tension et, dans certains cas, des bouteilles à gaz comprimé. Certains transformateurs plus anciens qui sont encore en service peuvent contenir des diphényles polychlorés (BPC), dont plusieurs dégagent des sous-produits toxiques lorsqu’ils sont chauffés.

À leur arrivée sur les lieux d’un incendie de poste électrique ou de réseau de production, les sauveteurs doivent être prêts à protéger les propriétés adjacentes. Le personnel autorisé avertira les sauveteurs lorsque le poste électrique aura été sécurisé sur le plan électrique. Une fois l’isolation de l’énergie électrique réalisée et contenue, les sauveteurs peuvent éteindre l’incendie.
Danger d'arc électrique

Un **danger d'arc électrique** existe lorsque des conducteurs électriques ou des parties de circuits électriques sous tension sont exposés ou se trouvent à l'intérieur d'équipement dissimulé ou à accès limité. Le danger est présent lorsqu'une personne utilise l'équipement électrique d'une manière inadéquate ou contrevient aux limites d'approche sécuritaire. Dans des conditions normales de fonctionnement, l'équipement dissimulé sous tension ayant été adéquatement installé et entretenu ne devrait pas présenter de danger d'arc électrique.

Véhicules en contact avec des fils sous tension

<table>
<thead>
<tr>
<th>Situation d'urgence</th>
<th>Mesures devant être prises par le personnel d'urgence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un fil tombé se trouve sous un véhicule dans lequel prennent place des passagers...</td>
<td>Ne touchez à aucune partie du véhicule. Vous pourriez être électrocuté, même si vous portez des gants de caoutchouc. Demandez aux passagers de demeurer où ils sont jusqu'à ce que l'equipe de spécialistes en électricité arrive.</td>
</tr>
<tr>
<td>Le conducteur n'est pas blessé et peut déplacer le véhicule...</td>
<td>Demandez au conducteur de déplacer le véhicule loin du fil et de toute flaque d'eau qui pourrait être mise sous tension par lui. Assurez-vous de vous trouver dans une position sans risque de blessure dans l'éventualité où le fil se redresse lorsque le véhicule se déplace. Assurez-vous que personne ne se trouve à un endroit dangereux.</td>
</tr>
<tr>
<td>Un fil tombé se trouve à travers un véhicule dans lequel se trouvent des passagers...</td>
<td>Ne touchez aucune partie du véhicule. Demandez aux passagers de demeurer où ils sont jusqu'à ce que l'équipe de spécialistes en électricité arrive.</td>
</tr>
<tr>
<td>Si le conducteur est blessé et ne peut pas déplacer le véhicule...</td>
<td>Demandez au conducteur de demeurer dans le véhicule jusqu'à ce que l'équipe de spécialistes en électricité arrive.</td>
</tr>
</tbody>
</table>

Il n'est pas nécessaire d'avoir un contact direct avec des lignes électriques pour qu'il y ait un danger d'arc électrique puisque l'électricité peut jaillir à partir des lignes jusqu'à une grue ou à une autre pièce d'équipement.
DANGERS ÉLECTRIQUES AUXQUELS DES GROUPES DE TRAVAIL PARTICULIERS SONT EXPOSÉS

<table>
<thead>
<tr>
<th>Groupes de travail</th>
<th>Dangers</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soudeurs</td>
<td>Les répondants doivent savoir que tous les soudeurs utilisent les systèmes électriques pour « souder, couper ou braser ». Ils doivent être au courant des dangers électriques et prendre des mesures positives en vue de les éliminer ou de les atténuer.</td>
<td></td>
</tr>
<tr>
<td>Grutiers</td>
<td>Le contact avec des lignes électriques aériennes est une importante cause de décès dans le secteur. L'électricité peut se déplacer d'une ligne électrique à un travailleur touchant à n'importe quelle partie de la grue ou de son chargement.</td>
<td></td>
</tr>
</tbody>
</table>
| Conducteurs de camions de roulage ou d'autre équipement lourd | Les pneus peuvent exploser lors d'un contact avec des lignes électriques ou un éclair ou après ce contact. Si un véhicule entre en contact avec des lignes électriques aériennes, un flux de courant électrique massif peut passer à travers le véhicule et ses pneus :
 • Ce contact peut faire exploser les pneus ou les faire brûler de l'intérieur. Les équipes de sauvetage doivent prendre en considération leur angle d'approche, les distances sécuritaires et la taille du pneu.
 • Ce contact peut entraîner l'accumulation de gaz et de chaleur, ce qui pourrait faire exploser le pneu ultérieurement, même jusqu'à 24 heures après l'incident.
 • L'explosion causée pourrait blesser les personnes se trouvant à proximité des débris volants.
 • Pour éviter les blessures, le véhicule doit être isolé à une distance sécuritaire pour un certain temps. | |
| Appareils pour travailler le sol (excavatrices, tracteurs, niveleurs, etc.) | Les lignes électriques et de communication enfouies présentent un danger pour les conducteurs d'équipement utilisés pour des activités de creusement de tranchées et d'excavation. Les opérateurs doivent être au fait des dangers que présente la pénétration de lignes électriques sous tension et prendre des mesures positives pour éliminer le danger avant de creuser. | |
LIGNES DIRECTRICES POUR LES SITUATIONS D'URGENCE ÉLECTRIQUE

Présumez toujours que tous les fils et les équipements électriques sont sous tension jusqu'à preuve du contraire. Les équipes de sauvetage minier doivent s'assurer que l'isolement des sources d'énergie est fait avant de mener des opérations de sauvetage.

- À leur arrivée sur la scène d'un incident, les véhicules d'intervention doivent demeurer à une distance qui leur permet d'éviter de s'exposer aux dangers électriques.
- Contrôlez la scène de l'incident afin d'éviter que des personnes puissent accéder au site sans autorisation et de prévenir l'exposition aux dangers électriques.
- Attendez que le personnel autorisé ait isolé le courant électrique. Utilisez des dispositifs de cadenassage/d'étiquetage lorsque vous effectuez du travail à proximité de sources d'énergie conformément aux procédures d'isolation propres au site.
- Protégez-vous contre les décharges électriques, les brûlures et les blessures aux yeux causées par les arcs électriques.
- Établissez une zone d'exclusion équivalente à la distance entre deux pôles (c.-à-d. une portée) dans toutes les directions à partir des lignes électriques se trouvant par terre.
- Soyez au fait que des lignes électriques endommagées peuvent franchir de grandes distances d'elles-mêmes lorsqu'elles sont sous tension ou en raison de l'effet “mémoire bobine” du fil.
- Soyez conscient que les autres fils peuvent avoir été affaiblis et peuvent tomber en tout temps.
- Soyez prudent lorsque vous élevez ou descendez des échelles, des plateformes de travail surélevées et des bras articulés à proximité de lignes électriques.
- Ne touchez aucun véhicule ou équipement qui est en contact avec des fils électriques.
- N'utilisez pas de jets d'eau concentrés ou directs sur des feux pris dans de l'équipement sous tension.
- Soyez conscient que des clôtures en grillage métallique, en maillons de chaîne, en barbelés ou en rails d'acier peuvent être mises sous tension par des fils se trouvant à l'extérieur de votre champ de vision.
- Lorsque des fils sont tombés, portez attention à toute sensation de picotement, puisqu'elle indique un gradient à la terre.
Chapitre 5 Gaz et atmosphères dangereuses
OBJECTIFS

Les équipes de sauvetage minier se trouvent dans des environnements où les substances toxiques et dangereuses présentent des risques pour leur santé. La capacité à identifier ces substances et à agir en toute sécurité à leur égard constitue un aspect fondamental du sauvetage minier. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer sa compréhension de ce qui suit :

- Termes, concepts et formules
- Propriétés et effets des gaz de mine

Introduction

De nombreux gaz se trouvant dans une mine dans les conditions normales d'exploitation peuvent avoir un effet dommageable sur le corps humain s'ils sont inhalés en concentrations supérieures à la limite de sécurité reconnue pendant une certaine période de temps.

Lors de situations d'urgence, comme des incendies, d'importantes quantités de gaz toxique ou explosif peuvent être émises et la teneur en oxygène de l'atmosphère peut alors être grandement appauvrie. Lors d'un incendie de mine, les mineurs doivent accorder la priorité à leur propre protection contre ces conditions.

CONCEPTS ET DÉFINITIONS

Compréhension du seuil : Produits chimiques toxiques

Les concentrations mortelles de gaz toxiques peuvent être d'à peine quelques parties par million (ppm). Pour plusieurs d'entre nous, 1 ppm est aussi difficile à visualiser que la dette nationale. Les exemples qui suivent vous aideront à comprendre ce qu'une partie par million représente en réalité et à penser en unités métriques. Une ppm est la même chose que :

- Un pas de 1 mètre sur 1 000 kilomètres
- 1 millilitre sur 1 000 litres de liquide
- 1 centimètre carré sur 100 mètres carrés
- 1 sou sur 10 000 dollars

Les valeurs limites d'exposition (VLE) sont des concentrations aériennes de substances auxquelles la plupart des travailleurs peuvent être exposés jour après jour sans subir d'effet indésirable. Par contre, en raison de la grande variation du degré de sensibilité de chacun, un petit pourcentage de personnes peuvent éprouver de l'inconfort causé par certaines substances dans des concentrations situées à la limite d'exposition ou plus bas. Un pourcentage encore plus petit peut être affecté plus sérieusement par l'aggravation d'une condition préexistante ou par le développement d'une maladie professionnelle.

Les catégories de VLE sont les suivantes :

La VLE – moyenne pondérée dans le temps est la concentration moyenne pondérée dans le temps d'une journée de travail normale de 8 heures et d'une semaine de travail de 40 heures, au cours desquelles tous les travailleurs peuvent être exposés à répétition sans effets indésirables sur la santé.

Remarque : Lorsque la moyenne pondérée dans le temps n'est pas indiquée, il faut se référer à la VLE pour huit heures.
Dans le cas de quarts de travail allant au-delà d'une journée de travail de 8 heures et d'une semaine de travail de 40 heures, une formule d'**équivalent de concentration** doit être utilisée. La formule choisie dépend du territoire où la mine se trouve.

La **VLE pour une exposition de courte durée** est la concentration à laquelle des travailleurs peuvent être exposés pour une courte période de temps sans souffrir de ce qui suit :
- Irritation
- Dommage chronique ou irréversible aux tissus
- Narcose d'un degré suffisant pour augmenter la probabilité d'une blessure accidentelle, nuire à l'auto sauvetage ou réduire considérablement l'efficacité au travail, à condition que la VLE – moyenne pondérée dans le temps quotidienne ne soit pas dépassée.

La STEL n'est pas une limite d'exposition indépendante distincte. Il s'agit plutôt d'un complément à la limite de la moyenne pondérée en fonction du temps (TWA) pour laquelle il y a des effets aigus reconnus pour une substance dont les effets toxiques sont principalement d'une nature chronique. Les STEL sont recommandées seulement dans les situations où des effets toxiques ont été observés chez les humains ou les animaux fortement exposés à court terme.

Une STEL se définit comme une exposition de 15 minutes qu'on ne doit dépasser à aucun moment pendant une journée de travail, même si la moyenne pondérée dans le temps pour une durée de 8 heures se situe à l'intérieur de la VLE.

Les expositions aux STEL ne doivent ni excéder 15 minutes ni avoir lieu plus de 4 fois par jour. Il doit y avoir une période d'au moins 60 minutes entre des expositions successives à la STEL. Une période autre qu'une période de 15 minutes peut être recommandée lorsque le résultat est justifié par des effets biologiques observés.

La **valeur limite maximale d'exposition** (VLE-Plafond) est la concentration qui ne doit pas être dépassée en tout temps pendant l'exposition.

Valeurs limites d'exposition combinées

L'air dans une mine peut contenir plusieurs gaz différents qui, lorsque combinés, peuvent causer des effets indésirables, qui doivent être pris en considération. Lorsqu'au moins deux substances dangereuses ont un effet toxicologique semblable sur la même cible ou le même système, il faut prendre en considération leur effet combiné plutôt que leur effet individuel. L'équation pour déterminer la VLE combinée est la suivante :

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \cdots \frac{C_n}{T_n} = TLV \ C$$

Équation dans laquelle C désigne la concentration et T, le temps.

La **dose létale moyenne** (DL 50) fait référence à la dose d'une substance toxique qui serait fatale pour 50 % d'une population échantillon.

La **concentration létale médiane** (CL 50) fait référence à la concentration à laquelle une substance toxique doit être dans l'atmosphère pour être mortelle pour 50 % d'une population d'échantillon.
Un danger immédiat pour la vie et la santé (DIVS) fait référence à une condition présentant un danger immédiat sur la vie ou la santé ou une condition présentant une menace immédiate d’exposition sévère à des contaminants. Si une concentration d’un contaminant est supérieure au seuil de DIVS, seul un appareil respiratoire à pression positive peut être utilisé pour pénétrer dans une telle atmosphère ou pour déplacer quelqu’un à travers celle-ci.

Des concentrations de particules aéroportées sont généralement mesurées en milligrammes par mètre cube d’air (mg/m³) et les concentrations gazeuses sont mesurées sous forme de parties par million ou pourcentage (%) par volume.

Les limites inférieure et supérieure d’explosibilité font référence aux concentrations minimales (LIE) et maximales (LSE) de gaz ou de vapeur dans l’air qui provoquerait l’embrasement en cas d’exposition à une source d’inflammation, à condition qu’il y ait suffisamment d’oxygène pour alimenter la combustion.

La densité relative (densité de vapeur ou gravité spécifique) est le rapport de la densité d’une substance à la densité d’une substance standard dans des conditions précisées. Dans le cas des liquides et des solides, la substance standard utilisée est habituellement l’eau. Dans le cas des gaz, la substance standard utilisée est souvent l’air.

L’échelle de pH est un moyen de mesurer l’acidité ou l’alcalinité d’une substance. Cette échelle est divisée en 14 degrés. L’eau pure a un pH de 7. Un pH inférieur à 7 indique qu’une substance est acide, alors qu’un pH supérieur indique qu’une substance est basique ou alcaline. Les substances acides et basiques sont toutes deux corrosives, la sévérité augmente plus on s’éloigne d’un pH de 7.

Les exigences réglementaires et les procédures propres au site établissent les précautions particulières requises pour tout gaz entreposé ou transporté dans des conteneurs sous pression.
NOM DU GAZ
Mélange de gaz dans l'air (AIR)

PROPRIÉTÉS
L'air est incolore, inodore, insipide et inflammable. Il s'agit d'un mélange de plusieurs gaz qui, bien qu'ils soient habituellement invisibles, peuvent être pesés, comprimés en un liquide ou gelés à l'état solide. L'air pur et sec du niveau de la mer contient plusieurs gaz, dans les proportions suivantes selon leur pourcentage de volume : azote (N₂), 78,09 %; oxygène (O₂), 20,94 %; argon (Ar), 0,94 %; dioxyde de carbone (CO₂), 0,03 %. L'air présente également des traces d'autres gaz, comme l'hydrogène et l'hélium. L'air d'une mine bien ventilée affiche parfois des diminutions du contenu en oxygène.

FORMATION
L'air est l'enveloppe invisible qui entoure la Terre, dans laquelle les plantes, les animaux et les êtres humains vivent et respirent.

EFFETS SUR LES HUMAINS
L'air d'une mine peut être contaminé par la présence d'autres gaz comme le monoxyde de carbone, le dioxyde de soufre, le sulfure d'hydrogène, le méthane, les oxydes d'azote et le dioxyde de carbone excédentaire. La présence de ces gaz peut être causée par ce qui suit :

- Abattage à l'explosif ou autres explosions
- Incendies de mine
- Diffusion provenant du minerai ou de la roche environnante, par exemple le méthane et le radon
- Dégradation du bois de mine
- Absorption d'oxygène par l'eau ou l'oxydation du bois ou du minerai
- Utilisation souterraine de moteurs au diesel
- Gaz libéré par de l'eau thermale (dioxyde de carbone, sulfure d'hydrogène)

Sauf dans le cas d'un incendie, des courants de ventilation positifs adéquats empêcheront l'accumulation de ces gaz à des niveaux dangereux. Les gaz peuvent affecter des personnes en raison de leurs propriétés combustibles, explosives ou toxiques ou, s'il s'agit de gaz inertes, par le déplacement de l’oxygène. Les effets peuvent être causés par une variété de conditions, dont celles-ci :

- **Altitude** : La respiration devient plus laborieuse en raison de la diminution de l'oxygène au fur et à mesure que l'altitude augmente. L'altitude n'est pas dangereuse en elle-même, sauf si les conditions sont extrêmes ou que le travail est exigeant.
- **Humidité** : Des températures élevées accompagnées d'une forte humidité sont très épuisantes et entraînent un inconfort considérable.
- **Température** : Des températures élevées accompagnées d'une humidité faible ne sont pas dangereuses, sauf pour ce qui est de l'effet de boursouffure causé par la chaleur.
Air impur
Des impuretés gazeuses non toxiques ne sont pas dangereuses, sauf si elles ont fait diminuer l'oxygène à un taux inférieur à 19,5 %. Sans égard au niveau d'oxygène, certains gaz toxiques ont des effets mortels, même en concentrations très faibles. Les effets peuvent être soudains ou graduels, selon la concentration de l'impureté.

REMARQUE : Les tableaux des effets physiologiques compris avec chaque fiche de gaz représentent des niveaux généraux associés aux effets et non aux portées particulières. Les données qu'ils contiennent proviennent de différents documents de référence. Des efforts ont été déployés afin d'utiliser les données les plus pertinentes et récentes possible.

NOM DU GAZ et SYMBOLE CHIMIQUE
Acétylène (C₂H₂)

PROPRIÉTÉS
L'acétylène est incolore et insipide, et présente une faible odeur d'oxyde de diéthyle. Il s'agit d'un combustible hydrocarboné hautement inflammable qui produit la flamme la plus chaude de l'industrie, c'est-à-dire 3 260 °C (5 900 °F), lorsqu'il est combiné avec de l'oxygène dans le cadre du processus oxyacétylénique.

L'acétylène est très instable et peut présenter un danger d'explosion s'il est comprimé à plus de 100 kilopascals (kPa) (15 psi) à l'état libre. Par conséquent, les bouteilles d'acétylène sont emballées avec des matières poreuses saturées d'acétone dans laquelle l'acétylène se dissout. L'acétylène peut ainsi être entreposé et transporté à une pression de 1 700 kPa (250 psi) en toute sécurité. Il ne faut jamais utiliser d'acétylène à une pression supérieure à 100 kPa (15 psi). L'acétylène a une concentration explosive de 2,8 % à 81 %.

FORMATION
Issu d'un mélange d'eau et de carbure de calcium.

EFFETS SUR LES HUMAINS
Peut prendre la place de l'oxygène.

AUTRES RENSEIGNEMENTS
 Associé à du cuivre ou à des alliages contenant plus de 67 % de cuivre, l'acétylène forme un composant explosif. Le danger est soigneusement évité dans la fabrication de têtes de soudage, de buses de chalumeau et de régulateurs.

Dans le cas où une bouteille d'acétylène a été déposée sur le côté, le Centre canadien d’hygiène et de sécurité au travail préconise de la redresser et d’attendre au moins une heure avant de l'utiliser.

Certains soudeurs appellent l’acétylène du « gaz » et l’oxygène, de l’« air ». Cette dangereuse habitude peut provoquer des blessures ou entraîner le décès dans certaines circonstances. Il convient d'appeler tous les gaz par leur nom réel.
NOM DU GAZ et SYMBOLE CHIMIQUE

Ammoniac (NH₃)

PROPRIÉTÉS
L'ammoniac est incolore et insipide, et présente une odeur caractéristique très piquante d'urine qui sèche.
Également connu sous le nom d'ammoniac anhydre ou de gaz ammoniac, l'ammoniac est un gaz corrosif inflammable ayant une odeur forte et distinctive détectable à des concentrations allant de 1 à 50 ppm. L'ammoniac a une concentration explosive de 16 % à 25 %.

FORMATION
L'ammoniac est formé lors de la réaction provoquée par l'association de l'azote et de l'hydrogène en présence d'un catalyseur. Il est conservé dans des bouteilles commerciales sous forme de gaz liquéfié comprimé. Il est corrosif et explosif lorsqu'exposé à la chaleur et à des substances comburantes. Il peut également être formé par le contact entre du nitrate d'ammonium et du ciment.

EFFETS SUR LES HUMAINS
En raison de son caractère corrosif, l'ammoniac irritera les yeux, le nez, la gorge, les poumons ou la peau humide et peut entraîner une détresse considérable. Même une courte exposition à des concentrations de 5 000 ppm ou plus peut entraîner rapidement la mort causée par la suffocation ou l'œdème des poumons.

AUTRES RENSEIGNEMENTS
Procédures de nettoyage particulières :
- Pour aérer, placez une bouteille qui fuit sous une hotte d'aspiration ou dans une zone extérieure sécuritaire. Indiquez que la bouteille vide est DÉFECTUEUSE.
- Utilisez un jet ou un brouillard d'eau pour réduire le nuage gazeux d'une fuite ou d'un déversement sérieux, mais ne vissez pas directement la source de la fuite.
- Si possible, tournez la bouteille qui fuit de manière à ce que ce soit du gaz plutôt que du liquide qui s'échappe. Isolez le secteur jusqu'à ce que le gaz se soit dispersé.

Procédures de lutte contre les incendies mettant en cause de l'ammoniac :
Les extincteurs au dioxyde de carbone et à poudre conviennent pour combattre des incendies mettant en cause de l'ammoniac. Arrêtez le flux de gaz ou de liquide et déplacez les bouteilles d'ammoniac hors de la zone d'incendie s'il est possible de le faire d'une manière sécuritaire. Utilisez un appareil de ventilation sécuritaire ou un jet d'eau pour faire en sorte que les contenants demeurent froids, mais ne dirigez pas l'eau directement sur la source de la fuite d'ammoniac. Les contenants sous pression peuvent exploser en cas d'incendie, ce qui libère du gaz ammoniac irritant. Soyez donc préparé en portant un appareil respiratoire autonome. L'ammoniac ne s'enflamme pas facilement, mais des explosions de mélange d'air et d'ammoniac ont déjà été constatées, particulièrement dans des espaces confinés.

<table>
<thead>
<tr>
<th>Effets physiologiques de l'ammoniac</th>
<th>Symptômes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ dans l'atmosphère (PPM)</td>
<td></td>
</tr>
<tr>
<td>1 à 3</td>
<td>Irritation bénigne des muqueuses</td>
</tr>
<tr>
<td>5 à 15</td>
<td>Irritation modérée des muqueuses</td>
</tr>
<tr>
<td>30</td>
<td>Douleur thoracique, essoufflement, toux</td>
</tr>
<tr>
<td>40 à 60</td>
<td>Fluide dans les poumons (œdème), pneumonie</td>
</tr>
<tr>
<td>400</td>
<td>Mortel en 30 minutes</td>
</tr>
<tr>
<td>1 000</td>
<td>Mortel en quelques minutes</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE

Dioxyde de carbone (CO₂)

PROPRIÉTÉS
Le dioxyde de carbone est un gaz incolore, inodore et insipide qui peut toutefois avoir un goût distinctement acide lorsque respiré en grande quantité. Ce gaz est ininflammable et n'entretient pas la combustion. Le dioxyde de carbone est plus lourd que l'air et se retrouve souvent dans des endroits bas et des chantiers miniers abandonnés.

FORMATION
Le dioxyde de carbone, un gaz inerte, est une composante normale de l'air d'une mine. Il s'agit d'un produit de la décomposition ou la combustion de composés organiques en présence d'oxygène, ainsi que de la respiration des humains et des animaux. La proportion de dioxyde de carbone de l'air d'une mine est haussée par le processus de respiration, les flammes nues, les explosions et l'abattage à l'explosif ou des fuites d'eau thermale. Le dioxyde de carbone est également utilisé comme agent extincteur, et peut être libéré par la glace sèche.

EFFETS SUR LES HUMAINS
Des recherches cliniques ont révélé que le dioxyde de carbone influence la fréquence respiratoire. Cette fréquence augmente rapidement lorsque la quantité de dioxyde de carbone est en hausse.

<table>
<thead>
<tr>
<th>Effets physiologiques du dioxyde de carbone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ dans l'atmosphère (ppm)</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>20 000</td>
</tr>
<tr>
<td>30 000</td>
</tr>
<tr>
<td>50 000</td>
</tr>
<tr>
<td>100 000</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE

Monoxyde de carbone (CO)

PROPRIÉTÉS
Le monoxyde de carbone est un gaz incolore, inodore et insipide qui entraîne des symptômes d'empoisonnement lorsque respiré, même en petite quantité. Son domaine de déflagration va de 12,5 % à 74 %. Il n'est que légèrement soluble dans l'eau, et les jets d'eau ne le suppriment de l'air en aucune mesure. Il est aussi un peu plus léger que l'air.

FORMATION
Le monoxyde de carbone représente pour les humains l'un des plus grands dangers chimiques. Il est produit lors de la combustion qui a lieu pendant les opérations normales d'abattage à l'explosif et le fonctionnement des moteurs à combustion interne. Il est également produit lors d'incendies de mine et d'explosions gazières. Il peut être formé partout où des composés organiques sont brûlés dans une atmosphère où l'oxygène est insuffisant pour mener le processus de brûlement ou d'oxydation à terme.

EFFETS SUR LES HUMAINS
Lorsque le monoxyde de carbone est absorbé, il réduit la capacité de l'hémoglobine à transporter l'oxygène vers les tissus. L'affinité de l'hémoglobine avec le monoxyde de carbone est environ 300 fois supérieure à son affinité avec l'oxygène. Cela signifie que, même lorsqu'une petite quantité de monoxyde de carbone se trouve dans l'air respiré, l'hémoglobine l'absorbera plutôt que l'oxygène. Cette interférence avec l'apport en oxygène du corps peut provoquer l'émergence de symptômes d'empoisonnement.

<table>
<thead>
<tr>
<th>Effets physiologiques du monoxyde de carbone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO dans l'atmosphère (PPM)</td>
</tr>
<tr>
<td>0 à 35</td>
</tr>
<tr>
<td>36 à 200</td>
</tr>
<tr>
<td>201 à 800</td>
</tr>
<tr>
<td>801 et plus</td>
</tr>
</tbody>
</table>

Graphique : Concentration du monoxyde de carbone en fonction du temps d'exposition.
NOM DU GAZ et SYMBOLE CHIMIQUE

Chlore (Cl₂)

PROPRIÉTÉS
Le chlore est un gaz lourd, jaune verdâtre, ininflammable et insipide, qui a une odeur semblable à du javellisant. Il se liquéfie facilement, et il est possible de s’en procurer commercialement sous forme de liquide sous pression dans des bouteilles et de grands conteneurs.

FORMATION
Le chlore se forme lors de l’électrolyse du sel ordinaire et par d’autres réactions chimiques mettant en cause des composés chlorés. Parmi ses utilisations, on compte les processus de traitement de l'eau potable et d’usinage.

EFFETS SUR LES HUMAINS
En raison de son hydro solubilité relativement faible, le chlore est un grave irritant pour les yeux, la peau et le système respiratoire (œdème).

AUTRES RENSEIGNEMENTS
Le chlore en tant que tel est ininflammable, mais il peut réagir et causer un incendie ou des explosions lorsqu’il entre en contact avec de la térébenthine, de l’éther, de l’ammoniac, des hydrocarbures, de l’hydrogène ou des tuyaux et récipients en acier.

Consultez les procédures propres au site pour la manipulation et l’entreposage du chlore. Seuls les travailleurs spécialement formés peuvent gérer des incidents mettant en cause du chlore. Il convient de prendre en considération certains éléments particuliers pour le traitement de conteneurs de chlore qui fuient :
- Si le chlore s’échappe sous forme liquide, tournez le contenant afin que du gaz chloré s’échappe. La quantité de gaz s’échappant d’une fuite est environ le cinquième de la quantité de liquide qui fuit par un trou de la même grandeur.
- N’appliquez pas d’eau sur une fuite de chlore.
- De minuscules fuites dans des bouteilles et de grands conteneurs peuvent parfois être temporairement arrêtées par des piquets coniques en bois dur ou des broches d’assemblage métalliques insérées dans les trous. Il faut d’abord tourner le contenant afin que seul du gaz s’en échappe. Il convient d’être extrêmement prudent lors de l’insertion du piquet puisqu’il est possible que la paroi entourant le trou soit mince et s’effrite. Après avoir pris cette mesure d’urgence, videz la bouteille aussi rapidement que possible.

<table>
<thead>
<tr>
<th>Effets physiologiques du gaz chloré</th>
<th>Symptômes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl₂ dans l’atmosphère (PPM)</td>
<td></td>
</tr>
<tr>
<td>0 à 6</td>
<td>Irritation des yeux</td>
</tr>
<tr>
<td>7 à 15</td>
<td>Irritation de la gorge et des poumons</td>
</tr>
<tr>
<td>16 à 30</td>
<td>Douleur thoracique, vomissement, toux,</td>
</tr>
<tr>
<td></td>
<td>respiration difficile, excès de fluide dans</td>
</tr>
<tr>
<td></td>
<td>les poumons (œdème)</td>
</tr>
<tr>
<td>430 et plus</td>
<td>Mortel en 30 minutes</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE
Hydrogène (H₂)

PROPRIÉTÉS
L'hydrogène est un gaz incolore, inodore et insipide. Il est hautement inflammable. Sa concentration explosive est de 4 % à 75 %, avec une proportion d'oxygène dans l'air d'au moins 5 %.

FORMATION
Il peut y avoir production d'hydrogène lorsque de la roche est chauffée jusqu'à incandescence. Il s'agit d'un produit de combustion incomplète ou de la distillation du charbon. La source d'hydrogène la plus commune dans les mines est la recharge de batteries.

EFFETS SUR LES HUMAINS
L'hydrogène peut être responsable d'une atmosphère à faible teneur en oxygène entraînant l'asphyxie.
NOM DU GAZ et SYMBOLE CHIMIQUE

Acide cyanhydrique (HCN)

PROPRIÉTÉS
L’acide cyanhydrique est un gaz incolore et insipide présentant une odeur caractéristique d’amandes amères. De nombreuses personnes ne détectent pas sa présence par l’odeur seule. Ainsi, cette dernière ne représente pas un avertissement adéquat relativement à une concentration dangereuse. Il se condense en un liquide incolore à des températures inférieures à -26 °C. L’acide cyanhydrique une concentration explosive de 5,6 % à 40 %.

FORMATION
L’acide cyanhydrique est formé par la réaction entre l’acide chlorhydrique et les composés cyanurés, comme le cyanure de potassium/sodium. Il peut se présenter dans des zones de concentration où le cyanure est utilisé comme réactif pour la transformation du minerai d’or, ainsi que dans d’autres endroits où sont employés des composés cyanurés. Il peut également émaner des résidus concentrateurs porteurs de cyanure. Une solution d’acide cyanhydrique dans de l’eau s’appelle de l’acide cyanhydrique ou de l’acide prussique.

EFFETS SUR LES HUMAINS
L’acide cyanhydrique est un poison mortel à action rapide qui cause la paralysie du système respiratoire et l’asphyxie chimique. Il interfère avec l’utilisation normale de l’oxygène par pratiquement tous les organes du corps. Il est particulièrement dangereux puisqu’il peut être absorbé par la peau ou par l’inhalation.

<table>
<thead>
<tr>
<th>Effets physiologiques de l’acide cyanhydrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN dans l’atmosphère (PPM)</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>0 à 20</td>
</tr>
<tr>
<td>20 à 50</td>
</tr>
<tr>
<td>Plus de 50</td>
</tr>
<tr>
<td>Plus de 110</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE
Sulfure d'hydrogène (H₂S)

PROPRIÉTÉS
Le sulfure d'hydrogène est un gaz incolore, insipide, hautement toxique et hautement soluble dans l'eau. En de faibles concentrations, on remarque son odeur caractéristique d'œufs pourris, mais en de fortes concentrations, le sens de l'odorat est rapidement paralysé par l'action du gaz sur le système respiratoire. On ne peut donc pas se fier à l'odeur comme avertissement. La concentration explosive du sulfure d'hydrogène est de 4,3% à 45 %.

FORMATION
Des explosions de poussière se produisant lors d'opérations de sautage dans des corps de minerai de sulfure peuvent créer du sulfure d'hydrogène. Le gaz est également formé lors du brûlement de minerai de sulfure ou avec la réaction de l'acide hydrochlorique à des concentrations de sulfure. Il peut également être libéré par des poches de charbon ou de roche environnante ou par des matières végétales se décomposant dans de l'eau.

EFFETS SUR LES HUMAINS
Le sulfure d'hydrogène est hautement toxique et a des effets neurotoxiques. Il paralyse instantanément le sens de l'odorat et progresse en causant la paralysie respiratoire, puis le décès. Il s'agit d'un irritant pouvant causer un œdème pulmonaire.

<table>
<thead>
<tr>
<th>Effets physiologiques du sulfure d'hydrogène</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S dans l'atmosphère (PPM)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Moins de 1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20 à 50</td>
</tr>
<tr>
<td>50 à100</td>
</tr>
<tr>
<td>Plus de 100</td>
</tr>
</tbody>
</table>

NOM DU GAZ et SYMBOLE CHIMIQUE

MAPP – Mélange de méthyl acétylène, de propadiène, de propylène et de propane

PROPRIÉTÉS
Le MAPP est un gaz incolore, insipide et légèrement soluble dans l'eau. Il peut sentir légèrement le poisson. Le MAPP a toutes les meilleures caractéristiques de l'acétylène, du gaz naturel et du propane et son utilisation est extrêmement sécuritaire. Il s'agit d'un gaz très stable. La concentration explosive du MAPP est de 1,8 % à 11,7 %.

FORMATION
Il s'agit d'une combinaison artificielle de gaz entreposé sous forme de liquide sous pression.

EFFETS SUR LES HUMAINS
Le MAPP peut causer une atmosphère à faible teneur en oxygène et avoir un effet anesthésiant lorsqu'il est présent en de fortes concentrations. Il est légèrement irritant pour la peau et, en raison de son taux d'évaporation élevé, il peut causer l'engelure ou la gelure des tissus de la peau qui entre en contact avec le liquide.
NOM DU GAZ et SYMBOLE CHIMIQUE

Méthane (CH₄)

PROPRIÉTÉS
Le méthane est un gaz incolore, inodore et insipide. Une odeur causée par la présence d'autres gaz, comme le sulfure d'hydrogène, l'accompagne souvent. Le méthane est plus léger que l'air et a une concentration explosive de 5 % à 15 %.

Directives relatives au méthane dans des environnements de travail :
- ≥ 1 % de méthane (20 % de la LIE) : Pas de sautage ou d'abattage à l'explosif.
- ≥ 1,25% de méthane (25 % de la LIE) : Isoler les circuits électriques.
- ≥ 2,5% de méthane (50 % de la LIE) : Tous les travailleurs doivent cesser leur travail.

FORMATION
Il est formé par la décomposition de matières organiques en la présence d'eau et en l'absence d'oxygène. On le voit sous forme de bulles dans des bassins d'eau. Il s'agit d'une composante du gaz naturel. Le gaz de méthane peut être emprisonné dans la roche dure et être libéré lors d'opérations de forage au diamant. Le méthane est également produit par le bois d'œuvre en décomposition.

EFFETS SUR LES HUMAINS
Le méthane peut engendrer une atmosphère à faible teneur en oxygène entraînant l'asphyxie.
NOM DU GAZ et SYMBOLE CHIMIQUE

Azote (N₂)

PROPRIÉTÉS
L'azote est un gaz incolore, inodore et insipide.

FORMATION
L'azote est un constituant naturel de l'atmosphère. On l'utilise dans le secteur sous forme de liquide ou de gaz comprimé.

EFFETS SUR LES HUMAINS
L'azote seul n'a aucun effet physiologique sur les humains. Par contre, des niveaux d'azote élevés peuvent engendrer une atmosphère à faible teneur en oxygène entraînant l'asphyxie.
NOM DU GAZ et SYMBOLE CHIMIQUE

Dioxyde d'azote (NO₂)

PROPRIÉTÉS
Aucune couleur en de faibles concentrations, brun rougeâtre en de fortes concentrations. Il peut sentir comme des fumées de tir. Il a un goût acide s'il est inhalé en de fortes concentrations. Il s'agit d'un des nombreux oxydes de l'azote.

FORMATION
Le dioxyde d'azote est formé lorsque de l'oxyde nitrique (NO) est exposé à l'air, par exemple par des arcs électriques, de la soudure à combustible oxygaz, par des moteurs à combustion interne et par le brûlage ou la détonation d'explosifs.

EFFETS SUR LES HUMAINS
Le dioxyde d'azote corrode les voies respiratoires, et son inhalation en des quantités relativement petites peut entraîner la mort. Les symptômes d'inhalation de petites doses de dioxyde d'azote peuvent débuter un certain temps après l'exposition. Parmi ses effets sur les voies respiratoires, on compte l’œdème et la tuméfaction. Cette irritation peut être suivie d'une bronchite ou d'une pneumonie, ce qui peut entraîner la mort.

<table>
<thead>
<tr>
<th>NO₂ dans l'atmosphère (PPM)</th>
<th>Effets de l'exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Cause au moins une irritation immédiate de la gorge.</td>
</tr>
<tr>
<td>100</td>
<td>Cause au moins la toux.</td>
</tr>
<tr>
<td>100 à 150</td>
<td>Dangereux même dans le cas d'une courte exposition.</td>
</tr>
<tr>
<td>200 à 700</td>
<td>Rapidement mortel après une courte exposition.</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE

Oxygène (O₂)

PROPRIÉTÉS
L’oxygène est un gaz incolore, inodore et insipide. Il est nécessaire à la vie et à la combustion.

FORMATION
On le retrouve dans l’atmosphère à titre de produit de la photosynthèse.

EFFETS SUR LES HUMAINS

<table>
<thead>
<tr>
<th>Pourcentage d’O₂ dans l’atmosphère (PPM)</th>
<th>Effets de l’exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moins de 23 (230 000)</td>
<td>Accélère la combustion.</td>
</tr>
<tr>
<td>21 (210 000)</td>
<td>Respiration normale</td>
</tr>
<tr>
<td>17 (170 000)</td>
<td>Respiration accélérée et plus profonde.</td>
</tr>
<tr>
<td>15 (150 000)</td>
<td>Étourdissement, bourdonnement, pouls rapide, mal de tête, vision brouillée.</td>
</tr>
<tr>
<td>9 (90 000)</td>
<td>Possibilité d’évanouissement ou de perte de conscience.</td>
</tr>
<tr>
<td>6 (60 000)</td>
<td>Mouvements convulsifs, respiration arrêtée. Peu après, le cœur cesse de battre.</td>
</tr>
</tbody>
</table>
NOM DU GAZ et SYMBOLE CHIMIQUE

Propane (C₃H₈)

PROPRIÉTÉS
Le propane est un gaz incolore, inflammable et inodore, mais on lui donne une odeur commercialement. Le propane est du gaz de pétrole liquéfié. La vapeur de propane est plus lourde que l'air. Tout gaz libéré recherchera des endroits bas, comme des excavations, ce qui peut entraîner l'accumulation et la création de mélanges inflammables. La concentration explosive du propane est de 2,4 % à 9,5 %.

FORMATION
Le propane est extrait de gaz naturels et de raffinerie. Il est comprimé afin qu'il devienne sous l'état liquide et demeure ainsi lorsqu'il est entreposé sous pression.

EFFETS SUR LES HUMAINS
Le propane peut engendrer une atmosphère à faible teneur en oxygène entraînant l'asphyxie.

AUTRES RENSEIGNEMENTS
Lorsqu'il est converti en vapeur, le volume du propane liquide est environ 270 fois supérieur. Ainsi, du gaz liquide qui s'échappe est plus dangereux que de la vapeur qui s'échappe d'une fuite de la même dimension.
NOM DU GAZ et SYMBOLE CHIMIQUE

Dioxyde de soufre (SO₂)

PROPRIÉTÉS
Le dioxyde de soufre est incolore, a un goût acide et a une forte odeur de soufre avec un faible seuil olfactif. Le dioxyde de soufre est soluble dans l'eau. Il s'agit d'un gaz lourd qui s'accumulera dans des endroits bas.

FORMATION
Le dioxyde de soufre est un gaz produit par des minerais sulfurés chauffés, brûlés ou explosés. Il est également produit dans les explosions de poussière de minerai sulfuré. Certaines essences diesel produisent de faibles quantités de dioxyde de soufre, lorsque brûlées.

EFFETS SUR LES HUMAINS
Le dioxyde de soufre peut causer des effets néfastes avant de devenir toxique. L'irritation des voies respiratoires et des poumons entraînera un œdème.

<table>
<thead>
<tr>
<th>Concentrations de SO₂ dans l'atmosphère (PPM)</th>
<th>Effets de l'exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 à 0,25</td>
<td>Irritation légère à sévère des yeux, du nez et de la gorge.</td>
</tr>
<tr>
<td>Plus de 0,25</td>
<td>Le dioxyde de soufre peut entraîner des conditions dangereuses sur la santé en raison de l'accumulation de fluides dans les poumons (œdème pulmonaire). L'exposition à de fortes concentrations peut être responsable de la toux, de la nausée, du vomissement, de l'essoufflement, du serrement dans la poitrine, de la douleur à l'estomac et de dommages corrosifs dans les voies respiratoires et les poumons (les symptômes peuvent apparaître après l'exposition). Il peut avoir des effets à long terme sur le système respiratoire. Le contact avec la peau peut causer des brûlures, mais les signes et les symptômes peuvent varier (p. ex., douleurs lancinantes, rougeur de la peau et cloques). Le contact avec les yeux peut entraîner différentes conséquences allant d'une irritation modérée à des brûlures sévères.</td>
</tr>
<tr>
<td>Plus de 100 ppm</td>
<td>Danger immédiat pour la vie et la santé (DIVS)</td>
</tr>
</tbody>
</table>
DANGERS ATMOSPHÉRIQUES PENDANT ET APRÈS LES INCENDIES

Pendant et après des incendies, les deux plus grands dangers pour la vie sont l’intoxication au monoxyde de carbone et le manque d’oxygène. Les conditions qui causent la contamination de l’atmosphère des mines sont les suivantes, par ordre de gravité du danger :

- Monoxyde de carbone : Ce gaz est toujours présent au moment lors d’un incendie et ne donne que peu ou pas d’avertissement de sa présence.
- Manque d’oxygène : Cette condition se présente lorsque l’oxygène est consommé par la combustion ou la réaction chimique et est remplacé par des gaz toxiques ou inertes. Il faut toujours prendre des précautions pour l’éviter.
- Gaz explosifs et fumée : Présentent des qualités irritantes et obstruent la vision.
- Méthane : Ce gaz n’est pas produit par des incendies de mine et des explosions gazières, mais il peut les causer. Sa présence dans une mine lors d’opérations de sauvetage ou de récupération crée un danger important.
- Dioxyde de soufre : Ce gaz est présent lorsqu’un incendie se déclare dans un corps de minerai sulfuré. En raison de ses qualités irritantes, il peut donner un avertissement lorsqu’il est présent en de faibles concentrations.
- Autres gaz : Le sulfate d’hydrogène, les oxydes d’azote, acide cyanhydrique, etc. ne sont pas susceptibles d’être présents, mais il faut garder en tête qu’il est possible d’en rencontrer. Le sulfate d’hydrogène indique parfois la présence de méthane.

Courroies transporteurs et pneus de caoutchouc en feu
Les courroies couvertes de polychlorure de vinyle (PVC) sont pratiquement ininflammables, mais lorsqu’elles sont chauffées, le PVC, le caoutchouc synthétique et le néoprène (qu’on retrouve dans les pneus en caoutchouc) produisent du gaz de chlore. Les autres gaz produits par le caoutchouc qui brûlent sont indiqués ci-dessous.

<table>
<thead>
<tr>
<th>GAZ PRODUITS PAR LE CAOUTCHOUC, LE NÉOPRÈNE ET LE PVC EN FEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoxyde de carbone</td>
</tr>
<tr>
<td>Chlore</td>
</tr>
<tr>
<td>Chlorure d’hydrogène</td>
</tr>
<tr>
<td>Phosgène</td>
</tr>
<tr>
<td>Dioxyde de soufre</td>
</tr>
<tr>
<td>Sulfure d’hydrogène</td>
</tr>
<tr>
<td>Dioxyde d’azote</td>
</tr>
<tr>
<td>Ammoniac</td>
</tr>
<tr>
<td>Cyanure d’hydrogène</td>
</tr>
<tr>
<td>Arsine</td>
</tr>
<tr>
<td>Phosphine</td>
</tr>
</tbody>
</table>

Sources de radiation
Parmi les sources de radiation, on compte les jauges nucléaires servant à prendre des mesures. Lors d’une intervention dans le cadre d’un incident mettant en cause cette source, il convient de communiquer avec le responsable de la radioprotection du site.

On compte également le radon comme source de radiation. Il s’agit d’un élément naturel libéré dans l’atmosphère de la mine. Lorsqu’il est libéré, il continue à se dégrader et forme des atomes radioactifs aériens. Si les niveaux de radon d’une zone sont très élevés, il est possible qu’un appareil de protection de la respiration soit nécessaire pour réduire l’exposition à la radiation. Consulter les procédures de sécurité propres au site relativement à toutes les émissions de radiation.
TABLEAU D'INTERVENTION RELATIF AUX GAZ DE MINE — Pour référence générale seulement (non réglementaire)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Symbole chimique</th>
<th>Densité relative Air = 1</th>
<th>Concentration explosive (%)</th>
<th>VLE (ACGIH)</th>
<th>DIVS (NIOSH)</th>
<th>Propriétés</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III = incolore, inodore, insipide</td>
<td>Consulter la fiche individuelle des gaz pour obtenir plus de renseignements.</td>
</tr>
<tr>
<td>Azote</td>
<td>H₂</td>
<td>0,07</td>
<td>4,1 à 74</td>
<td>Asphyxiant</td>
<td></td>
<td>III</td>
<td>Combustion incomplète, électrolyse de l'eau, charge de batteries</td>
</tr>
<tr>
<td>Méthane</td>
<td>CH₄</td>
<td>0,55</td>
<td>5 à 15</td>
<td>OUI</td>
<td>Non inscrit</td>
<td>III</td>
<td>Décomposition de matières organiques, roche carbonée, bois d'œuvre en décomposition, composante du gaz naturel</td>
</tr>
<tr>
<td>Ammoniac</td>
<td>NH₃</td>
<td>0,60</td>
<td>16 à 25</td>
<td>OUI</td>
<td>OUI</td>
<td>Incolore, forte odeur</td>
<td>Réaction entre l'azote et l'hydrogène en la présence d'un catalyseur</td>
</tr>
<tr>
<td>Acétylène</td>
<td>C₂H₂</td>
<td>0,91</td>
<td>2,8 à 81</td>
<td>Asphyxiant</td>
<td></td>
<td>Incolore, odeur caractéristique</td>
<td>Eau sur carbure de calcium</td>
</tr>
<tr>
<td>Cyanure d'hydrogène</td>
<td>HCN</td>
<td>0,94</td>
<td>5,6 à 40</td>
<td>OUI</td>
<td>OUI</td>
<td>Incolore, odeur d'amandes amères</td>
<td>Acide sur cyanure de sodium ou de potassium, produit pendant le traitement à la chaleur de l'acier à fleurets, peut être libéré par les résidus lorsque du cyanure a été utilisé pour l'extraction de minerai</td>
</tr>
<tr>
<td>Monoxyde de carbone</td>
<td>CO</td>
<td>0,97</td>
<td>12,5 à 74</td>
<td>OUI</td>
<td>OUI</td>
<td>III</td>
<td>Feux, explosions au gaz, sautage, combustion incomplète, échappement de moteurs au diesel ou à l'essence</td>
</tr>
<tr>
<td>Azote</td>
<td>N₂</td>
<td>0,97</td>
<td>s. o.</td>
<td>Asphyxiant</td>
<td></td>
<td>III</td>
<td>Composante de l'air, liquide ou gaz commercial</td>
</tr>
<tr>
<td>AIR</td>
<td></td>
<td>1,00</td>
<td>s. o.</td>
<td>OUI</td>
<td>OUI</td>
<td>III</td>
<td>Composante de l'air, à partir de la photosynthèse</td>
</tr>
<tr>
<td>Oxygène</td>
<td>O₂</td>
<td>1,10</td>
<td>s. o.</td>
<td>Non inscrit</td>
<td>III</td>
<td>Composante de l'air, à partir de la photosynthèse</td>
<td></td>
</tr>
<tr>
<td>Sulfure d'hydrogène</td>
<td>H₂S</td>
<td>1,19</td>
<td>4,3 à 45</td>
<td>OUI</td>
<td>OUI</td>
<td>Incolore, odeur d'œufs pourris</td>
<td>Décomposition de certains composés sulfurés, sautage de minerais sulfurés, décomposition de matières végétales dans l'eau, acide hydrochlorique sur sulfures</td>
</tr>
<tr>
<td>Dioxyde de carbone</td>
<td>CO₂</td>
<td>1,53</td>
<td>s. o.</td>
<td>OUI</td>
<td>OUI</td>
<td>III, saveur en forte concentration</td>
<td>Composante de l'air, respiration des humains et des animaux, décomposition ou combustion de composés organiques en la présence d'oxygène</td>
</tr>
<tr>
<td>Propane</td>
<td>C₃H₈</td>
<td>1,56</td>
<td>2,4 à 9,5</td>
<td>OUI</td>
<td></td>
<td>III, parfumé commercialement</td>
<td>Distillat du pétrole</td>
</tr>
<tr>
<td>MAPP</td>
<td>s. o.</td>
<td>1,58</td>
<td>1,8 à 11,7</td>
<td>OUI</td>
<td></td>
<td>III</td>
<td>Odeur caractéristique de poisson</td>
</tr>
<tr>
<td>Dioxyde de soufre</td>
<td>SO₂</td>
<td>2,20</td>
<td>s. o.</td>
<td>OUI</td>
<td>OUI</td>
<td>Incolore, odeur de soufre, saveur d'acide</td>
<td>Minerais sulfurés chauffés, brûlés ou explosés et certaines essences au diesel brûlées</td>
</tr>
<tr>
<td>Chlore</td>
<td>Cl₂</td>
<td>2,49</td>
<td>s. o.</td>
<td>OUI</td>
<td>OUI</td>
<td>Vert-jaune, odeur d'eau de Javel</td>
<td>Principalement de l'électrolyse du sel</td>
</tr>
<tr>
<td>Dioxyde d'azote</td>
<td>NO₂</td>
<td>2,62</td>
<td>s. o.</td>
<td>OUI</td>
<td>OUI</td>
<td>D'incolore à brun rougeâtre, saveur d'acide en forte concentration</td>
<td>Un des nombreux oxydes de l'azote, associé au brûlement, à la combustion, à l'action de voûte, à la soudure et à l’échappement de diesel</td>
</tr>
</tbody>
</table>

Figure 5.1 Renseignements généraux à propos des gaz les plus fréquents
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 6 Outils de sauvetage
OBJECTIFS

Des douzaines de différents outils sont communément utilisés lors d’interventions de sauvetage minier. Au terme de ce chapitre, l’apprenant sera en mesure de démontrer une compétence dans ce qui suit :
- Les concepts et définitions;
- Les éléments généraux de sécurité à prendre en considération;
- Les catégories d’outils;
- Les outils les plus souvent utilisés lors de sauvetages miniers.

CONCEPTS ET DÉFINITIONS

Les outils à utiliser seront dictés par le type d’incident, et ce, dans le but de réussir le sauvetage et d’assurer la sécurité du travailleur emprisonné et blessé tout en minimisant le risque sur le sauveteur et la victime. Le choix des outils doit également prendre en considération le maintien de l’exploitation minière (p. ex., véhicules, infrastructure, équipement) et la protection de celle-ci contre des dommages supplémentaires, ainsi que la remise en état plus facile des zones de travail affectées tout en préservant la scène de l’incident afin de procéder à une enquête.

Le présent chapitre ne constitue pas un inventaire exhaustif de chaque outil pouvant se retrouver sur un site minier. Les apprenants doivent être familiarisés avec tous ces outils.

On peut classer les outils de sauvetage en deux grandes catégories : les outils à main et les outils mécaniques.

Les outils à main sont des outils nécessitant une force manuelle. Ils accroissent la portée ou la force des actions du corps.

Les outils mécaniques fonctionnent à l’aide d’une source d’énergie externe ou interne. En temps normal, ils sont pneumatiques (actionnés à l’air comprimé), hydrauliques (actionnés par fluides) ou électriques (actionnés par une source d’énergie interne (batterie) ou externe (prise de courant)).

On peut classer les outils de ces deux catégories en des sous-catégories selon leur fonction :
- Servant à tourner
- Servant à pousser, à tirer et à soulever
- Servant à écarter et à séparer
- Servant à frapper
- Servant à couper
- Servant à lutter contre des incendies
- Servant pour les matières dangereuses et les déversements
- Sources d’énergie
- Divers

ÉLÉMENTS GÉNÉRAUX DE SÉCURITÉ À PRENDRE EN CONSIDÉRATION

- La sécurité est le premier élément à prendre en considération lorsqu’on utilise n’importe quel outil. Elle évite des blessures accidentelles aux sauveteurs, aux victimes et aux personnes présentes sur les lieux.
- Il faut toujours porter l’EPI approprié lorsqu’on utilise tout outil.
- Une formation et de la pratique quant à la bonne utilisation et aux fonctions des outils de sauvetage sont nécessaires avant l’utilisation.
- Il faut particulièrement prendre en considération les particularités des outils mécaniques (p. ex.,
combustion, étincelles, fumées, bruit).

- Un éclairage adéquat est essentiel pour utiliser les outils comme il se doit.
- Il est essentiel d'évaluer les conséquences du fonctionnement de l'outil avant de commencer.
- Il convient d'examiner l'outil pour y déceler des dommages avant chaque utilisation et de garder tous les outils en bon état de fonctionnement.
- Utiliser uniquement un outil pour les tâches pour lesquelles il a été conçu.
- Toujours respecter les directives du fabricant lors de l'utilisation d'un outil.
OUTILS ROTATIFS
Outils utilisés pour assembler et désassembler.

Parmi les outils fréquents, on compte *(de gauche à droite, du haut au bas)* les clés, les tournevis et les pinces.

OUTILS SERVANT À POUSSER, À TIRER ET À SOULEVER
Outils utilisés pour atteindre un objet ou pour appliquer une force supplémentaire.

Parmi les outils fréquents, on compte les fourches de levage, les crochets, les chaînes, les treuils, les treuils manuels, les coussins élévateurs, les vérins hydrauliques, le calage et l'étalement.

Équipement de sauvetage par câble *(consultez le chapitre 11)*.
OUTILS SERVANT À ÉCARTER ET À SÉPARER

Outils utilisés pour obtenir un accès.

Parmi les outils fréquents, on compte les leviers, les barres de purgeage, les écarteurs hydrauliques, les vérins, les pieds-de-biche, les pinces-monsignoreurs, les fendeurs de roches, les outils d'Halligan et les blocs arrache-serrure.

OUTILS SERVANT À FRAPPER

Outils utilisés pour appliquer une force d'impact ou pour obtenir un accès.

Parmi les outils fréquents, on compte les haches, les marteaux, les masses, les maillets, les têtes de pic, les centres-poinçons et les burins.
<table>
<thead>
<tr>
<th>OUTILS SERVANT À COUPER</th>
<th>SOURCES D'ÉNERGIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outils utilisés pour disjoindre un objet.</td>
<td>Les sources d'énergie fournissent de l'énergie indépendante sur le terrain.</td>
</tr>
<tr>
<td>Parmi les outils fréquents, on compte les couteaux, les scies à chaîne, les scies alternatives, les scies circulaires, les scies à métaux, les chalumeaux coupeurs, les coupe-boulons, les cisailles hydrauliques, les ciseaux, les pinces à coupe transversale et les burins pneumatiques.</td>
<td>Parmi les outils fréquents, on compte les génératrices d'électricité, les groupes d'éclairage, les sources d'alimentation hydraulique et les bouteilles d'air comprimé.</td>
</tr>
<tr>
<td>OUTILS SERVANT POUR LES ATMOSPHERES DANGEREUSES ET LES DEVERSEMENTS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Outils utilisés pour protéger les intervenants et aider au nettoyage.</td>
<td></td>
</tr>
<tr>
<td>Parmi les outils servant pour les atmosphères dangereuses et les déversements, on compte les équipements de lutte contre les déversements, les râteaux, les balais, les pelles, les détecteurs de gaz, les barils de suremballage, la ventilation, les appareils respiratoires, les dispositifs d'imagerie thermique, l'EPI contre les atmosphères dangereuses et l'équipement de décontamination.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTILS SERVANT À LUTTER CONTRE LES INCENDIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outils utilisés pour la suppression d'un incendie.</td>
</tr>
<tr>
<td>Parmi les principaux outils servant à lutter contre les incendies, on compte les extincteurs d'incendie, les tuyaux d'incendie, les buses et les pompes.</td>
</tr>
</tbody>
</table>
Parmi les autres outils utilisés pour les sauvetages miniers, on compte les appareils de communication, les échelles, les cordages de sécurité, l'équipement pour espace confiné (trépieds, harnais, équipement de ventilation), les bâches, les fusées éclairantes, l'équipement de premiers soins, l'équipement de contrôle du trafic et du danger, le ruban et les appareils de cadenassage.
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 7 Instruments de détection de gaz
OBJECTIFS

Les équipes de sauvetage peuvent déterminer les gaz et les vapeurs se trouvant dans une atmosphère en utilisant quelques différents outils et méthodes. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer une compétence dans ce qui suit :
- Les gaz qui peuvent être présents lors d'une intervention d'urgence;
- Le choix de l'équipement de surveillances et des méthodes convenables pour l'incident;
- Les compétences pratiques pour un programme de détection de gaz efficace.

Introduction

Il existe quatre catégories d'atmosphères dangereuses :
- Toxique
- Asphyxiante
- À faible teneur en oxygène
- Explosive

La sécurité intrinsèque est une conception appliquée à l'équipement et aux câblages électriques dans des endroits dangereux. La technique est basée sur la limitation de l'énergie électrique et thermique à un niveau inférieur à celui nécessaire pour enflammer un mélange atmosphérique dangereux particulier.

Toutes les composantes de l'équipement de protection individuelle doivent être prises en considération avant de procéder à tout essai relatif au gaz. Assurez-vous toujours que tout équipement de surveillance ou autre appareil électrique est intrinséquement sécuritaire.

CHOIX DE L’ÉQUIPEMENT DE DÉTECTION DE GAZ

Il est important de sélectionner un équipement de détection de gaz qui correspond aux besoins particuliers de l'incident. Aux fins de la détection de gaz dans le cadre d'une intervention de sauvetage minier, il convient d'utiliser des instruments à lecture directe (ILD). Ces instruments fournissent des renseignements au moment du prélèvement, ce qui permet une prise de décision rapide.

Tout l'équipement utilisé respecte les lois, normes et règlements pertinents en matière de santé et de sécurité.

Lorsqu’il choisit son équipement de détection de gaz, l’utilisateur doit faire ce qui suit :
- Vérifier s’il y a des conditions qui pourraient interférer avec le fonctionnement de l’équipement.
 - Sensibilité transverse : Réaction d’un capteur à un gaz créant des interférences. La réaction d’un capteur à un gaz qui n’est pas la cible du capteur.
 - Certains gaz, comme l’acétylène, peuvent créer des interférences avec le capteur de l’instrument et masquer la présence de dioxyde de soufre (SO₂).
 - Autres interférences fréquentes : Champs électromagnétiques, humidité, pression atmosphérique/altitude, températures basses, saturation et concentrations élevées.
- Prendre en considération les critères de performance et les spécifications de l’instrument :
 - Temps de réaction : Capacité à réagir au gaz en question dans le temps établi (p. ex., 90 % de lecture en 30 secondes).
 - Bruit/dérive : À quel point les lectures fluctuent lorsque la quantité ou la concentration d’une substance demeure la même.
Limiter de détection : La quantité ou la concentration la plus basse d'une substance que l'instrument peut enregistrer à l'intérieur d'une marge de sécurité.

Exactitude : Le degré auquel la mesure d'une quantité d'une substance correspond à la valeur réelle de la quantité en question.

Précision : Le degré auquel des mesures répétées effectuées dans des conditions identiques donnent les mêmes résultats.

Plage dynamique : Le rapport entre le plus grand et le plus petit signal possible. Le plus petit est la limite de détection et le plus grand est la saturation du capteur.

Remarque : Suivez les spécifications du fabricant pour connaître l’application et l’utilisation.

TYPES DE DÉTECTEUR DE GAZ

Les indicateurs **colorimétriques (de style tube)** mesurent plus de 200 gaz et vapeurs organiques et inorganiques dans l'air. Les tubes de verre scellés sont remplis d'une matière granuleuse enrobée d'un produit chimique qui change de couleur lorsqu'il réagit à une vapeur ou un gaz particulier.

- **Avant l'utilisation** : Il convient de consulter les directives du fabricant relativement au type de tube particulier.
 - Procéder à un essai d'étanchéité de la pompe.
 - S'assurer que la flèche de direction est orientée vers la pompe.

- **Fonctionnement** : Une pompe portable tire un volume connu d'air par un tube détecteur conçu pour mesurer la concentration. Le changement de couleur est ensuite lu sur une échelle imprimée sur le tube.

- **Éléments à prendre en considération** : Exactitude de la mesure, limites de détection, interférences, température/humidité, durée de vie en stockage, temps pendant lequel le colorant est stable après le prélèvement.

Les lectures d'un tube indicateur à court terme doivent être comparées aux limites d'exposition à court terme appropriées, comme la valeur limite d'exposition pour une exposition de courte durée (TLV-STEL) et la valeur limite maximale d'exposition (TLV-C).

- **Stockage du tube et durée de vie en stockage** :
 - Les tubes ont une durée de vie en stockage. Ces dates d'expiration sont imprimées sur la boîte.
 - Les tubes doivent être entreposés adéquatement en évitant les températures excessivement basses ou hautes et la lumière solaire directe.

- **Avantages** :
 - Fonctionnement à l'aide d'une seule main.
 - Poids léger et fonctionnement simple.
 - Toujours prêt pour utilisation (aucune batterie).
 - Tubes pour plus de 200 gaz et vapeurs différents.
L'échelle de mesure imprimée sur les tubes donne une lecture immédiate du résultat.

- **Limitations** :
 - Les tubes et les pompes sont propres à chaque fabricant.
 - Aucun système d'alarme, donc, non recommandé pour la lecture en continu.
 - Les résultats dépendent de l'interprétation de l'opérateur.
 - L'application peut nécessiter de plus longues périodes dans les atmosphères pour que des résultats apparaissent (jusqu'à quelques minutes).
 - Durée de vie en stockage limitée.
 - Exactitude limitée (plus ou moins 20 %).
 - Plusieurs sensibilités transverses.
 - Le champ d'applications dépend de l'humidité et de la température.
 - Doit être entreposé, manipulé et éliminé comme il se doit.

- Parmi les types courants de détecteurs, on compte Dräger et Gastec.

Système de mesure par plaquette Dräger
Cette variété d'appareils de vérification de gaz à tubes suit les mêmes principes de réaction chimique. Les principales différences sont les suivantes :

- De petits tubes se trouvent dans une plaquette de plastique avec un identifiant à code à barres.
- Pompe et lecteur à tubes fonctionnant à batterie.
- Écran d'affichage indiquant le gaz testé, l'intervalle, la durée du prélèvement et la lecture réelle.

La plaquette a 10 tubes de prélèvements individuels. Chaque tube ne peut être utilisé qu'une seule fois. L'appareil de vérification balaye la plaquette lorsque celle-ci est insérée dans le lecteur et indique le gaz et l'intervalle pour lesquels la plaquette est conçue.

Détecteurs de gaz électroniques
Un détecteur de gaz électronique est un système complexe qui comprend un ou des capteurs entourés de composantes électroniques sensibles, d'avertisseurs (visuelles, sonores, vibrantes), une batterie et un écran d'affichage. Tous les détecteurs de gaz électroniques doivent respecter les normes du fabricant, qui sont assujetties à des règlements. Les détecteurs de gaz électroniques sont offerts sous forme d'unités individuelles, multi gaz, stationnaires (non portables) et spécialisés.

- **Avantages** :
 - Les détecteurs multi gaz ont recours à des capteurs séparés pour l'oxygène et les atmosphères combustibles.
 - Ils peuvent enregistrer plusieurs gaz toxiques dans le même moniteur portatif.
 - Plusieurs modèles ont des capteurs interchangeables.
 - Ils fournissent des alertes de niveau faible et de niveau élevé.
 - Protection contre la mise hors tension accidentelle (il faut tenir enfoncé le bouton de fermeture de trois à cinq secondes pour éteindre l'appareil).
 - Plusieurs modèles peuvent enregistrer les données à l'interne.
 - Il y a également des stations d'accueil portatives offertes pour plusieurs modèles.
 - Ils peuvent avoir une pompe motorisée interne ou un moniteur de diffusion avec une pompe amovible qui permet à l'instrument d'être utilisé à plusieurs fins, y compris pour
accéder à un espace confiné ou pour prendre des mesures à partir d'une distance ou d'une hauteur plus élevée.

- **Limitations :**
 - La sensibilité des capteurs et la réaction aux gaz se dégraderont avec le temps; durée de vie en stockage limitée.
 - Les gaz reconnus sont différents d'un capteur à l'autre.
 - Ils ont besoin de temps pour effectuer une procédure de pré utilisation.
 - Les capteurs et les batteries ont une durée de vie limitée.
 - Les conditions environnementales, comme la température, l'humidité, la poussière, la saleté et la manipulation brusque contribuent toutes à la dégradation prématuère des capteurs.

<table>
<thead>
<tr>
<th>Lumidor Impact Pro, d'Honeywell</th>
<th>Ventis MX4, d'Industrial Scientific</th>
<th>MX, de Dräger</th>
</tr>
</thead>
</table>

Durée de vie habituelle des différents types de capteurs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capteurs d'oxygène</td>
<td>1 à 5 ans</td>
</tr>
<tr>
<td>Capteurs catalytiques de gaz combustibles</td>
<td>3 à 5 ans</td>
</tr>
<tr>
<td>Capteurs électrochimiques de gaz toxiques</td>
<td>1 à 4 ans (selon le type)</td>
</tr>
<tr>
<td>Capteurs de gaz à infrarouge</td>
<td>5 à 10 ans</td>
</tr>
<tr>
<td>Capteurs de gaz à photo ionisation</td>
<td>2 à 4 ans</td>
</tr>
</tbody>
</table>

HABILETÉS PRATIQUES

Prélèvement atmosphérique

L'opérateur effectuant les essais de prélèvement est responsable de ce qui suit :

- Suivre les spécifications et directives du fabricant.
- S'assurer d'effectuer les bonnes techniques de prélèvement en raison de la stratification des gaz qui peut être présente.
- Bon prélèvement : l'opérateur doit effectuer le prélèvement avant d'entrer, avant d'entrer de nouveau et continuellement pendant que le travail est effectué.
- Lors d'exploration souterraine, les essais liés au gaz doivent être faits aux intersections ou lorsque les conditions changent.
- Il faut procéder au prélèvement dans le haut, dans le milieu et dans le bas d'un espace, conformément aux spécifications du fabricant.
 - En raison du poids des gaz, effectuez un prélèvement tous les 1 à 2 mètres (3 à 7 pieds).
 - Certains gaz sont plus légers que l'air (céthane), alors que certains sont un peu plus légers (monoxyde de carbone) et d'autres, plus lourds que l'air (chlore).
Essai de fiabilité et étalonnage
Les éléments les plus importants dans l'entretien d'un détecteur de gaz sont l'essai de fonctionnement (fiabilité) et l'étalonnage. Ces essais peuvent être faits automatiquement à l'aide d'une station d'accueil ou manuellement.

Pour l'essai de fonctionnement (fiabilité), il faut exposer le moniteur à une concentration connue de gaz afin de vérifier le fonctionnement du capteur et de l'avertisseur.

- Les fabricants recommandent de procéder à un essai de fiabilité sur chaque instrument avant de l'utiliser, et ce, chaque jour.
- Les essais de fiabilité ne sont pas des mesures de l'exactitude de l'instrument.
- Lorsqu'un instrument ne répond pas comme il se doit pendant un essai de fiabilité, il convient de procéder à un étalonnage complet avant de l'utiliser à nouveau.

Étapes pour mettre un détecteur de gaz sous tension
1. Inspecter visuellement l'appareil pour y déceler des dommages ou des contaminations.
2. Allumer l'instrument dans une bonne atmosphère et vérifier le niveau des batteries.
3. Régler l'instrument à zéro.
4. Procéder à l'essai de fiabilité (vérification de fonctionnement) de l'instrument.
5. Nettoyer les pointes au besoin.

Procédure relative à l'essai de fiabilité
Cet essai est effectué en appliquant une concentration connue de gaz afin de vérifier le rendement du capteur et le fonctionnement de l'avertisseur. Suivre les étapes simples ci-dessous pour effectuer l'essai de fiabilité.

1. Allumer l'instrument et le réchauffer.
2. Régler l'instrument à zéro.
3. Appliquer le gaz d'étalonnage.
4. Attendre que les capteurs réagissent au gaz d'étalonnage.
5. Vérifier le bon fonctionnement de l'avertisseur.
6. Retirer le gaz et laisser le moniteur se nettoyer.
7. Si un des capteurs de fonctionne pas, ne pas l'utiliser

L'étalonnage permet de s'assurer que les détecteurs fonctionnent comme il se doit. Le processus utilise un gaz d'étalonnage ayant une concentration donnée.

- Consulter les protocoles d'étalonnage recommandés par le fabricant.
- Il est recommandé d'effectuer un étalonnage d'instrument complet à l'aide de gaz d'étalonnage afin de veiller à une exactitude optimale.
- Il établit l'exactitude du point de mesure.
- Il donne un aperçu de la condition des capteurs de l'instrument.
- Il ajuste les lectures pour tenir compte des changements causés par la dégradation des capteurs.

Les gaz d'étalonnage sont des mélanges certifiés et traçables de concentration de gaz. Les bouteilles à gaz d'étalonnage sont indiquées comme suit :

- Gaz et concentrations
- Numéro de pièce
- Date d'expiration

Respecter les recommandations du fabricant lors de l'utilisation des régulateurs pour bouteille à gaz d'étalonnage et lors de leur élimination.
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 8 Appareils de protection respiratoire
OBJECTIFS

Lorsqu'une intervention est faite dans le cadre d'incidents dans des milieux dangereux, le choix du bon équipement de protection peut faire la différence entre la vie et la mort. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- Les environnements respiratoires dangereux qu'on retrouve dans une intervention de sauvetage en milieu minier.
- Les concepts relatifs à un appareil respiratoire.
- Les limitations et les caractéristiques de sécurité d'un appareil respiratoire.
- Recharge et essai hydrostatique des bouteilles à gaz comprimé.

Consultez les lignes directrices du fabricant et les procédures propres au site pour connaître les soins, l'utilisation, les spécifications et la manipulation de l'appareil respiratoire.

Introduction

Il se peut que les gens qui sont exposés à une atmosphère dangereuse ne soient au courant ni de la présence du danger ni du besoin de se protéger. Une ventilation adéquate et indiquée constitue la meilleure solution pour remédier à une atmosphère dangereuse. (Exception à cette règle : lorsqu'il y a du feu) Il faut utiliser un équipement respiratoire adéquat si une équipe de sauvetage minier ne peut ventiler une zone et si des vies ou la propriété sont à risque.

La teneur en oxygène peut atteindre des niveaux dommageables dans le contexte de scénarios dangereux, comme ceux qui suivent :

- Incidents mettant en cause un incendie
- Chantier minier

Atmosphères dangereuses :

- Gaz ou vapeurs toxiques
- Manque d’oxygène/gaz asphyxiants
- Gaz ou vapeurs explosifs/inflammables
- Fumée, aérosols, émanations (contaminants particulaires)

Les poumons et les voies respiratoires sont plus vulnérables aux blessures causées par des atmosphères dangereuses que toute autre partie du corps. L'inhalation de gaz chauffés peut causer un œdème (accumulation de fluides) dans les poumons, ce qui peut causer le décès par asphyxie. Si l'air est chauffé ou humide, les dommages peuvent être encore pires. Les dommages causés aux tissus par l'air chaud ne sont pas immédiatement réversibles en introduisant de l'air frais. Lorsque de l'air chauffé ou humide entre dans les poumons, il peut causer une diminution importante de la pression sanguine et l'insuffisance de l'appareil circulatoire.
CONCEPTS DE L'APPAREIL

Les équipes de sauvetage minier utilisent des appareils respiratoires en circuit ouvert et en circuit fermé.

Dans un **appareil respiratoire non autonome**, l'oxygène de l'atmosphère est inspiré par un filtre vers l'appareil respiratoire du sauveteur. Dans des environnements où du monoxyde de carbone est présent, il doit y avoir suffisamment d'oxygène dans l'atmosphère pour qu'un appareil respiratoire non autonome fonctionne comme il se doit.

Dans un **appareil respiratoire autonome**, l'air respirable est fourni à partir d'une bouteille ou libéré en tant que produit d'une réaction chimique qui se produit dans une composante de l'appareil.

Dans un **appareil à circuit ouvert**, l'air expiré est libéré dans l'atmosphère ambiante.

Dans un **appareil à circuit fermé**, l'air expiré est remis en circulation à l'intérieur du système.

Pression positive par rapport à pression négative

L'appareil apportera de l'oxygène/de l'air respirable au porteur en la présence de **pression positive**. Un système à pression positive maintiendra une pression interne supérieure à la pression externe. Les avantages de la pression positive sont les suivants :

- Elle réduit la possibilité que de toxines atmosphériques externes (fumée, gaz) pénètrent dans le système, par exemple si le sceau du masque est brisé.
- Aucun effort respiratoire n'est requis de la part du porteur (non restreint).

La pression interne d'un système à **pression négative** est inférieure à la pression externe.

Tous les modèles et marques d'appareils respiratoires comportent des instructions du fabricant pour la mise en place (endosser l'appareil) et l'enlèvement (retirer l'appareil). Les sauveteurs doivent s'exercer à suivre les procédures des fabricants des modèles utilisés à leur site.

Appareils de protection respiratoire à épuration d'air (APR)

(autonomes, à circuit ouvert)

Les APR suppriment les contaminants de l'air en expulsant par filtration les particules (p. ex., poussières, émanations, brumes), les gaz et les vapeurs. Pour être utilisés, ils nécessitent la bonne teneur en oxygène (c.-à-d. 19,5 %) dans l'atmosphère puisqu'ils ne créent ni ne fournissent d'oxygène au porteur. Leur facteur de protection est limité. Les différentes cartouches ont un code de couleur relativement à leur contaminant atmosphérique respectif.

Les masques sont offerts sous différentes formes, y compris (de gauche à droite) des modèles jetables, à cartouche

Il faut procéder à un essai d'ajustement qualitatif pour tous les respirateurs de type masque. Assurez-vous de la conformité aux règles, normes et lois locales.
APPAREILS AUTOSAUVETEURS
(non autonomes, à circuit ouvert)

MSA W65
Il s'agit d'un respirateur strictement conçu pour l'auto sauvetage, afin de protéger le porteur contre le gaz de monoxyde de carbone. Il est petit et peut facilement être transporté à la ceinture du mineur en milieu souterrain.

Le modèle MSA W65 est scellé à l'aide d'azote. Si le sceau est brisé, l'unité ne doit pas être utilisée parce que les produits chimiques de l'appareil se détériorent. Les utilisateurs doivent toujours examiner leurs appareils auto sauveteurs avant de les utiliser afin d'y repérer des dommages.

Fonctionnement
- L'air est inspiré par la partie inférieure de l'appareil auto sauveteur et passe par le sac filtrant à particules grossières.
- Ensuite, l'air passe à travers un filtre à particules fines au bas du conteneur.
- Puis, l'air passe à travers un agent desséchant qui retire l'excès d'humidité, réduit l'efficacité de l'hopcalite et détériore celle-ci. L'hopcalite n'est pas consommée dans la réaction puisqu'il s'agit d'un catalyseur.
- L'air passe à travers l'hopcalite, ce qui cause une réaction catalytique qui transforme le monoxyde de carbone en dioxyde de carbone, créant de la chaleur dans le processus.
- L'air, qui peut être dangereusement chaud, passe ensuite à travers un échangeur de chaleur afin d'être refroidi.
- Lorsqu'expiré, l'air passe à nouveau par un échangeur de chaleur, puis ressort par un clapet de non-retour qui empêche l'air externe de pénétrer dans le respirateur. L'échangeur d'air utilise tant l'atmosphère extérieure que l'air expiré pour refroidir l'air inhalé.

Voici les caractéristiques de l'appareil auto sauveteur W65 :
- Il requiert une teneur en oxygène d'au moins 19,5 % dans l'air.
- Il fonctionne dans un environnement dont l'humidité est de 95 % et moins.
- Il protège le porteur contre une proportion de 1 % (10 000 ppm) de monoxyde de carbone pendant une heure.
- Il génère de la chaleur lorsqu'il est exposé à des niveaux de monoxyde de carbone supérieurs, ce qui raccourcit la durée d'utilisation de l'unité. Les porteurs doivent se trouver dans une atmosphère respirable avant d'enlever l'unité.
- Il a une durée d'utilisation de 10 ans et une durée d'entreposage de 15 ans lorsqu'il est stocké comme il se doit.
- Il requiert des essais conformément aux spécifications du fabricant.
Figure 8-1 : Fonctionnement d’un appareil auto sauveteur
APPAREILS AUTO SAUVETEURS AUTONOMES (AAA)
(À circuit fermé, autonomes)

Les appareils auto sauveteurs générateurs d’oxygène sont conçus strictement pour l’auto sauvetage et pour fonctionner d’une manière complètement indépendante de l’atmosphère ambiante.

Fonctionnement
- L’oxygène est libéré par la réaction chimique de l’humidité provenant de l’air expiré mélangé avec le super oxyde de potassium (KO₂). Cette réaction produit de la chaleur. Une deuxième réaction se produit entre l’hydroxyde de potassium nouvellement créé et le dioxyde de carbone provenant de l’air expiré, qui retient/absorbe le dioxyde de carbone.
- L’oxygène est inhalé à partir du sac respiratoire, qui sert également de réservoir d’air respirable.
- Un échangeur de chaleur est intégré dans le tube respiratoire afin de refroidir l’air avant son inhalation.
- Un système de démarrage rapide répond aux besoins en oxygène immédiats de l’utilisateur jusqu’à ce que la composante chimique du conteneur soit active.

Un certain nombre d’appareils auto sauveteurs générateurs d’oxygène sont offerts sur le marché aujourd’hui. En voici quelques-uns :

De gauche à droite : Oxy 3000/6000 de Dräger, Oxy SR 90 de Dräger et l’appareil auto sauveteur longue durée de CSE
APPAREIL DE PROTECTION RESPIRATOIRE À CIRCUIT FERMÉ (APCF)
(À circuit fermé, autonome, pression positive)
L’une des fonctions principales des APCF consiste à absorber le dioxyde de carbone et à fournir de l’oxygène. Ils recyclent également l’oxygène inutilisé provenant de l’air expiré par le porteur. L’air recyclé est enrichi d’oxygène provenant d’une bouteille d’oxygène comprimé avant d’être inhalé.

La pression positive à l’intérieur du masque protège le porteur contre un environnement potentiellement toxique. Les APCF modernes maintiennent une pression positive en utilisant des ressorts situés sur le sac respiratoire/la chambre lorsque le volume interne d’oxygène dans le système a diminué.

La durée supérieure pour le porteur (jusqu’à quatre heures) permet aux APCF d’être utilisés dans le cadre d’incidents dans des mines souterraines ou en surface.

Voici deux APCF à pression positive fréquents :
- Dräger – PSS BG4
- Bio Marine – BioPak 240R
APPAREIL RESPIRATOIRE AUTONOME (ARA)
(À circuit ouvert, autonome, pression positive)

Les ARA protègent le porteur contre les atmosphères dangereuses en lui fournissant de l'air respirable.

Plusieurs fabricants produisent des ARA conçus pour des interventions d'urgence et une utilisation industrielle. Il existe de nombreux modèles pour ce qui est de la configuration des commandes, mais les composantes de base et les principes de fonctionnement sont identiques.

Les ARA à circuit ouvert utilisent de l'air comprimé filtré. La plupart des systèmes à circuit ouvert ont deux régulateurs : un régulateur de premier étage pour réduire la pression de l'air comprimé dans la bouteille et un régulateur de deuxième étape pour réduire cette même pression encore davantage à un niveau tout juste supérieur à la pression atmosphérique. Cet air est ensuite envoyé vers le masque par un détendeur activé par l'inhalation. Lorsque le porteur expire, son souffle sort du masque par la soupape d'expiration en direction de l'atmosphère extérieure, ce qui fait des ARA des appareils à circuit ouvert. Les ARA ont des clapets de purge/dérivation pour les situations d'urgence.

Les quatre principales composantes d'un ARA sont les suivantes :
- **Assemblage en sac à dos** : L'ARA est conçu pour que la bouteille d'air se trouve sur le dos de la personne qui le porte.
- **Régulateur** : L'ARA réduit la pression de la bouteille à des niveaux de débit et de pression requis pour l'inhalation.
- **Masque** : L'ARA est conçu pour fournir un air de faible pression, du régulateur à la bouche et au nez du sauveteur. Il peut également fournir de la protection en cas de brûlures au visage et de fumée et de gaz d'incendie entrant en contact avec les yeux.
- **Bouteille d'air comprimé** : L'ARA est conçu pour stocker une certaine quantité d'air respirable sous pression. Selon sa conception et taille, les bouteilles peuvent contenir suffisamment d'air pour 30 à 90 minutes à des pressions allant de 2 216 à 5 500 psi (lbs/po.²).

PSS 7000 de Dräger, Safety Air Pak X3 de Scott, ARA G1 de MSA
Les **connexions d’air universelles de l’équipe d’intervention rapide (RIC/UAC)** permettent aux membres de l’équipe de joindre directement deux bouteilles d’air comprimé de tout type afin de fournir de l’air aux ARA que portent des victimes ou d’autres sauveteurs lorsque leur approvisionnement est bas. Ils ne sont pas conçus pour une recharge rapide, pour travail à deux ou pour toute autre utilisation non approuvée. Si l’unité a une connexion d’équipe d’intervention rapide, il s’agit d’un raccord normalisé servant uniquement pour une utilisation d’urgence (RIC UAC), NFPA 1981 (édition de 2013).

Dispositif d’alarme personnel (DAP)

Un **DAP** est utilisé par le porteur d’un ARA à titre d’alarme de sécurité ayant une sirène de volume élevé qui retentit si le porteur demeure immobile, par exemple s’il s’est écroulé ou s’il est emprisonné (normalement configuré pour une préalarme lorsque le porteur est immobile; alarme complète lorsqu'il est immobile pendant 30 secondes). Il est également possible de le déclencher manuellement. Le bruit fort donne une indication de la localisation que le personnel de sauvetage pourra suivre. Les modèles d’ARA conforme à la NFPA ont le système DAP intégré dans l’unité. Il s’active automatiquement lorsque l’ARA est allumé. Certains modèles non intégrés ont une clé pour allumer le dispositif. La clé est ensuite remise à la personne responsable de l’entrée de l’équipe avant que celle-ci pénètre un bâtiment ou une structure.

La durée de l’approvisionnement en air d’un ARA dépend d’un certain nombre de facteurs :

- Le niveau d’effort de l’utilisateur.
- La condition physique de l’utilisateur.
- Le degré auquel la respiration de l’utilisateur est affectée par son excitation, sa peur ou ses autres émotions.
- Le degré de formation ou d’expérience.
- Le type d’appareil.
- La pureté de l’air comprimé (présence possible de dioxyde de carbone).
- Le travail à des pressions supérieures ou inférieures à l’atmosphère normale.

ESSAI ET CHARGE DES BOUTEILLES

Charge des bouteilles d’air comprimé

Dans un **système d’entreposage en cascade**, plusieurs grosses bouteilles servent à établir une pression désirée à l’intérieur d’une petite bouteille. Pour ce faire, il faut toujours utiliser la bouteille d’approvisionnement ayant la pression la plus faible en premier, puis la bouteille ayant la deuxième pression la plus faible, etc. Un système en cascade peut être relié à un système de purification et un compresseur d’air approuvé pour l’air respirable (norme CSA Z-180.1-00).

Les bouteilles d’air respirable peuvent également être chargées
directement à partir d'un **compressed air respirable approved** ou d'une configuration de compressed air/reservoir d'entreposage.

Recharge des bouteilles d’oxygène
Les bouteilles d’oxygène sont chargées en transférant de l’oxygène à partir de bouteilles d’oxygène de qualité médicale à grande capacité à l’aide d’une pompe à pression élevée.

L'essai hydrostatique implique la mise sous pression d'une bouteille au-delà de sa pression de fonctionnement à des normes de sécurité établies afin de s'assurer de la durabilité de celle-ci avec le temps. La fréquence des essais hydrostatiques pour une bouteille d’air comprimé dépend du matériel et du modèle utilisés.
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 9 Oxygénothérapie
OBJECTIFS

L'oxygénothérapie est administrée afin d'aider une victime à respirer. Les sauveteurs miniers doivent savoir à quel moment l'utiliser et de quelle manière. Dans certains territoires de compétences, l'oxygénothérapie fait partie de la formation en premiers soins. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- Les pratiques sécuritaires pour l'entreposage, le transport et l'utilisation de l'oxygène
- La manière de déterminer le moment où utiliser l'oxygénothérapie
- Les bienfaits de l'oxygénothérapie
- Les composantes et l'assemblage de l'équipement d'oxygénothérapie
- L'administration de l'oxygénothérapie
- Le calcul de la durée en fonction du débit d'une bouteille d'oxygène

ENTREPOSAGE, TRANSPORT ET UTILISATION SÉCURITAIRES

Le fait de suivre ces lignes directrices relatives aux bouteilles d'oxygène médical aidera à prévenir des incidents.

Entreposage

- S'assurer que l'équipement est propre et fonctionne bien. Veiller à ce que les connexions soient serrées et que les commandes puissent être utilisées facilement.
- Conserver les bouteilles en sécurité en tout temps.
- Lorsque des bouteilles à grande capacité sont entreposées, le bouchon de la valve de protection doit être en place afin de protéger l'équipement contre les dommages.
- Entreposer toutes les bouteilles dans un endroit frais, bien aéré et spécialement conçu.
- Garder les agents oxydants, les agents corrosifs et les combustibles à l'écart.
- Toutes les bouteilles sont assujetties aux essais hydrostatiques conformément aux spécifications du fabricant.

Transport

- Les bouteilles doivent être bien protégées et recouvertes lorsqu'elles sont transportées.
- Ne jamais utiliser de bouteille comme rouleau ou comme support.

Utilisation

- Lorsque les bouteilles sont utilisées, il est strictement défendu de fumer ou d'utiliser une flamme nue. Lorsque possible, placer des enseignes dans certains endroits, comme les salles pour les premiers soins.
- Lors du remplacement des bouteilles, ouvrir les valves lentement et vérifier s'il y a des fuites.
- Pendant l'utilisation, toujours garder les bouteilles en sécurité et bien éloignées de la chaleur et des flammes.
- S'il n'est pas possible de corriger une bouteille non étanche en serrant la valve, il faut clairement l'étiqueter et la transporter à l'extérieur, à un endroit loin des sources d'inflammation, des flammes nues et du pétrole. Il convient de mettre la bouteille en sécurité et de laisser la
pression sortir complètement. La bouteille clairement étiquetée doit être retournée au fournisseur afin d’être réparée. Ne jamais expédier une bouteille qui fuit.

- Toutes les bouteilles doivent être remplies par une personne qualifiée.

MOMENT OÙ UTILISER L'OXYGÉNOTHÉRAPIE

L'oxygène est essentiel à la fonction normale des cellules et à la vie en tant que telle. Toute condition qui affecte l'approvisionnement, l'échange ou le transport d'oxygène entre l'atmosphère et les cellules du corps entraîne l'**hypoxie**, une condition qui se définit comme l'oxygénation inadéquate des tissus organiques.

L'oxygène supplémentaire donné pendant le traitement des blessures avant de se rendre à l'hôpital peut améliorer considérablement la guérison et même les chances de survie. L'oxygénothérapie ne constitue pas un substitut du dégagement des voies respiratoires. Une formation plus exhaustive est nécessaire pour utiliser des techniques avancées.

Le corps a besoin d'un approvisionnement continu en oxygène, mais n'est pas en mesure d'en emmagasiner. Toute victime ayant les antécédents, les signes ou les symptômes suivants souffrira d'hypoxie :

- Peau pâle, froide, moite (choc)
- Cyanose (lèvres, lobes d'oreille ou ongles de doigt bleus)
- Essoufflement (dyspnée) ou absence de respiration
- Problèmes relatifs à la fonction cardiaque
- Perte sanguine (interne ou externe)
- Perte de conscience
- Brûlures étendues
- Lésions par écrasement
- Blessures de la moelle épinière
- Réactions allergiques
- Historique de trauma grave, même s'il n'y a pas de blessures apparentes
- Nausée et vomissement
- Maux de tête
- Agitation, irritabilité ou confusion
- Étourdissement
- Blessures dues à une grossesse

BIENFAITS DE L'OXYGÉNOTHÉRAPIE

Parmi les bienfaits de l'oxygénothérapie, on compte :

- Apport en oxygène au cerveau accru, ce qui réduit la perte du système nerveux et permet de maintenir les fonctions corporelles vitales
- Apport en oxygène au cœur accru
- Volume de travail réduit pour le cœur grâce à l'enrichissement de la quantité d'oxygène dans le sang, ce qui réduit le volume de sang à pomper
- Stabilisation du rythme et de mode respiratoires
- La réduction du mouvement d'une poitrine blessée réduira la douleur associée aux tentatives de respiration
- Contenu de l'air enrichi en oxygène atteignant les poumons dans le cas d'une obstruction partielle des voies respiratoires
- Échanges gazeux améliorés dans les poumons congestionnés par des fluides (œdème ou pneumonie) ou des particules en fournissant plus d'oxygène dans un volume limité
- Échanges gazeux améliorés au niveau des tissus
• Tonus musculaire accru, particulièrement dans les parois artérielles
• Réduction généralisée de la douleur et de l’anxiété

L’amélioration de la condition de la victime peut être indiquée comme suit :
• Amélioration de la couleur, la température et la condition de la peau
• Réduction de l’effort respiratoire
• Stabilisation du pouls
• Réduction de la douleur
• Réduction de l’anxiété, de l’appréhension et de l’agitation
• Meilleur niveau de conscience

Victimes ayant des problèmes respiratoires chroniques
Les personnes ayant une bronchopneumopathie chronique obstructive (BPCO) ou en cours sont à court de souffle d’une manière chronique et ont de la difficulté à respirer. Les personnes aux stades avancés de cette condition se trouvent rarement dans un milieu de travail. Si les premiers soins ou l’oxygénothérapie sont nécessaires, il faut les administrer de la même manière que pour toute autre victime, mais il faut surveiller la respiration très attentivement. Au besoin, il convient de réduire le débit, mais sans arrêter l’oxygénothérapie une fois qu’elle a commencé.

ÉQUIPEMENT D’OXYGÉNOTHÉRAPIE

L’unité d’oxygénothérapie
Une unité d’oxygénothérapie possède trois composantes principales : une bouteille d’oxygène, un régulateur et un tube d’alimentation muni d’un masque. Les unités portatives requièrent également un étui de transport afin de protéger l’unité.

Bouteilles d’oxygène
L’oxygène de qualité médicale (approximativement 99 % d’oxygène) est offert sous forme de gaz comprimé à 2 000 psi dans une variété de formats de bouteilles standards. Les formats des bouteilles sont les suivants :
• D (412 litres)
• E (682 litres)
• M (3 540 litres)
• K (6 900 litres)

Remarque : Un symbole « + » se trouvant sur la bouteille indique que la pression peut être augmentée de 10 % (2 200 psi).

Peu importe la taille des bouteilles utilisées, celles-ci sont assujetties aux exigences des essais hydrostatiques. La date de l’essai hydrostatique est marquée sur la bouteille. Une étoile à cinq pointes sur le dessus de la bouteille indique que la date liée à l’essai hydrostatique a été prolongée de cinq ans, et qu’il faut procéder à un nouvel essai tous les dix ans par la suite. Marquage des bouteilles
Les bouteilles D et E ont une sortie à poste médical avec ergots et munies d’une valve s'ouvrant à l'aide d'une clé spécialement conçue. Les autres ont une sortie filetée spéciale à oxygène CGA-540 et une valve à main. Les deux connexions sont conçues pour être uniques et pour empêcher le branchement par inadvertance à d'autres gaz que l'oxygène.

Régulateurs de pression

L’assemblage du régulateur a deux objectifs :

- Il réduit la pression de l'oxygène fourni à partir de la bouteille à 40 à 70 psi.
- Il régularise le débit (en litres par minute, ou lpm) de l’oxygène administré.

L’assemblage du régulateur fixe la bouteille à l’aide d’une collerette contenant les tiges correspondant au poste médical et un dispositif à vis de serrage. Les bouteilles ayant une connexion filetée sont fixées à l’aide d'un filetage femelle correspondant sur l'assemblage du régulateur. Il existe des adaptateurs servant à fixer ensemble les connexions filetées et de type collerette. L'adaptateur utilisé pour l'assemblage du régulateur de type collerette dans une bouteille filetée peut être particulièrement important dans une situation d’urgence majeure. L'utilisation de ces adaptateurs empêchera les gaz autres que l'oxygène d’être connectés.

Masque à oxygène et tube d'alimentation

Plusieurs types de modèles de masques d'alimentation sont offerts. Les tubes d'alimentation sont compris avec les masques. Tous les masques, à l'exception des masques à usage unique, requièrent une formation plus poussée.
CAREvent
Pour utiliser cet appareil pour l'oxygénothérapie, suivez les mêmes étapes que pour une unité d'oxygénothérapie normale. La seule différence est qu'il est possible d'utiliser une bouteille Dräger BG4 de 3 000 psi. Le tuyau d'alimentation et le masque utilisés avec une unité d'oxygénothérapie normale fonctionneront avec ce régulateur.

Le réanimateur portatif peut également être utilisé pour l'oxygénothérapie administrée à une victime qui respire. L'appareil fonctionnera sur demande, comme un appareil respiratoire autonome (ARA). Lorsque la victime inspire, un clapet s'ouvre pour laisser passer l'oxygène vers le masque ou le demi-masque intérieur.

Suivre les étapes suivantes pour préparer le réanimateur portatif à l'utilisation :
1. S'assurer que l'ajustement du débit d'oxygène est à zéro.
2. Brancher la bouteille d'approvisionnement au régulateur.
4. Brancher le tuyau d'alimentation du tuyau d'alimentation au réanimateur.
5. Fixer le réanimateur au masque ou au demi-masque intérieur.
6. Allumer la bouteille d'oxygène.
7. Placer le masque ou le demi-masque intérieur sur la victime (ajuster les sangles comme il se doit).

Remarque : Toutes les connexions doivent être serrées uniquement avec les doigts.

Le présent manuel ne décrit pas les fonctions que le réanimateur portatif ARA CAREvent peut offrir pour une victime qui ne respire pas. Veuillez consulter la formation propre au site et suivez toujours les recommandations du fabricant.
INSPECTION DES BOUTEILLES ET ASSEMBLAGE DES COMPOSANTES

Inspection
- Avant leur utilisation, il faut inspecter visuellement toutes les composantes afin d’y repérer des dommages et des contaminations. Si des anomalies sont décelées, il convient d’étiqueter la composante et de la mettre hors service.
- Chercher une étiquette ou des marques de service indiquant l’état de la bouteille.
- Vérifier les étampes d’essai hydrostatique sur la bouteille conformément aux directives du fabricant.

Assemblage
- Certains types de bouteilles sont offerts avec une sangle de rupture en plastique sur le joint. Il existe également une version en métal avec un centre en caoutchouc qui peut être utilisée plus d’une fois. S’assurer que le joint ne soit pas doublé en retirant l’ancien. S’il n’est pas retiré, des problèmes d’alignement peuvent survenir.
- Placer la bouteille en position verticale.
- Pointer l’ouverture dans une direction sécuritaire, à l’écart des personnes ou des matières inflammables.
- La bouteille doit rapidement être ouverte et fermée afin de s’assurer qu’il n’y a pas de contaminant dans l’ouverture.
- Alors que la collerette est placée sur le poste médical, il faut s’assurer que le joint est en place et que les tiges de la collerette sont alignées avec les trous sur le poste (indexation des ergots).
- Serrer la vis de serrage pour fixer le régulateur uniquement avec les mains.
- S’assurer que la commande de débit du régulateur est complètement fermée avant d’ouvrir la bouteille. (Dans certains modèles, il faut tourner dans le sens inverse des aiguilles d’une montre.)
- Ouvrir la valve de la bouteille lentement afin de stabiliser la jauge, puis continuer à tourner pour ouvrir d’un tour complet.
- Procéder à un essai d’étanchéité :
 - Fermer la valve de la bouteille.
 - Observer la jauge pour y déceler des chutes de pression pendant cinq minutes.
 - Ouvrir la valve de la bouteille.
 - Observer le mouvement de la jauge.
 - S'il y a une chute dans la lecture de la pression, serrer à nouveau le régulateur sur la bouteille et refaire l’essai.
 - S'il n'y a pas de chute de pression, fermer la bouteille et purger la pression dans le régulateur à l'aide de la commande de débit.
- L'unité est maintenant prête à être utilisée et doit être entreposée d'une manière sécuritaire dans un endroit désigné.

ADMINISTRATION DE L'OXYGÈNE
Lors de l’administration d’oxygène, respecter les étapes et prendre les précautions qui suivent :
- Il est strictement interdit de fumer ou d’approcher une flamme.
- S’assurer que le masque et les tuyaux sont fixés à l’assemblage du régulateur. Ouvrir la valve de la bouteille doucement et lentement.
- Allumer la commande de débit du régulateur au débit désiré.
Laisser l’oxygène circuler pendant quelques secondes afin de retirer tout corps étranger du tuyau et du masque.

Demander à la victime si elle a déjà eu de l’oxygénothérapie tout en la rassurant à propos de l’utilisation et des bienfaits de celle-ci avant de la lui administrer.

Si la victime est inquiète, lui demander de tenir le masque près de son visage si elle en est capable, jusqu’à ce qu’elle soit à l’aise. Lorsque c’est le cas, placer la sangle élastique derrière sa tête.

Toutes les victimes ayant besoin d’oxygénothérapie devraient recevoir un débit d’oxygène constant de 10 litres par minute, sauf si le temps de déplacement ne justifie une diminution de l’approvisionnement.

Documenter l’heure de début d’administration, les débits prodigués et tout effet constaté sur la victime.

Ne laissez jamais un masque à oxygène fixé sur le visage d’une victime qui n’est pas entièrement alerte, même si elle est en position latérale ou de récupération. Si elle vomit, il est possible que les voies respiratoires ne se dégagent pas d’elles-mêmes.

PROCÉDURE DE FERMETURE
Une fois l’oxygénothérapie terminée, suivre les étapes suivantes :

- Fermer le débit sur le régulateur.
- Noter la pression restante de la bouteille. Changer la bouteille conformément aux procédures opérationnelles du site. Remarque : il est généralement considéré qu’une pression de 200 psi signifie que la bouteille est vide.
- Fermer la valve principale de la bouteille.
- Rouvrir la valve de débit et purger la pression du régulateur jusqu’à ce que la ou les jauges soient à zéro.
- Fermer la valve de débit.
- Replacer le masque et le tube d’alimentation avec la nouvelle unité et s’assurer que toutes les composantes sont prêtes à être utilisées.
- En cas de changement de bouteille ou de retrait d’un régulateur, il convient de purger la pression résiduelle du régulateur et de démonter l’unité.

DURÉE DE LA BOUTEILLE D’OXYGÈNE
Le sauveteur qui administre l’oxygène doit s’assurer que l’approvisionnement est suffisant pour la durée des soins apportés à la victime. Par exemple, pour évaluer rapidement la durée d’une bouteille D (400 litres) en fonction du débit utilisé :

1. Diviser la pression de la bouteille (psi) par 100.
2. Multiplier le résultat par :
 - 3,0 pour 6 litres par minute (lpm)
 - 2,5 pour 8 litres par minute (lpm)
 - 2,0 pour 10 litres par minute (lpm)

<table>
<thead>
<tr>
<th>Durée de la bouteille d’oxygène – Calculs empiriques Cylindre « D », 400 litres d’oxygène</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSION DE LA BOUTEILLE (psi)</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>2 000</td>
</tr>
<tr>
<td>1 500</td>
</tr>
<tr>
<td>750</td>
</tr>
</tbody>
</table>
En utilisant la méthode du facteur de la bouteille
Remarque : Facteur de sécurité moins (-) 500 psi

<table>
<thead>
<tr>
<th>TAILLE DE LA BOUTEILLE</th>
<th>FACTEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0,16</td>
</tr>
<tr>
<td>E</td>
<td>0,28</td>
</tr>
<tr>
<td>M</td>
<td>1,56</td>
</tr>
<tr>
<td>H-K</td>
<td>3,14</td>
</tr>
</tbody>
</table>

Calcul : Pression de la bouteille multipliée par le facteur
Divisé par le débit (lpm) = minutes
Exemple : Bouteille de format D avec pression de 2000 psi x facteur de 0,16 = 320
Divisé par un début de 6 litres par minute = 53,33 minutes

Les tableaux ci-dessous présentent les durées de différents pressions et débits pour les bouteilles de type E, M et K.

Durée de la bouteille d'oxygène
Cylindre « C », 682 litres d'oxygène

<table>
<thead>
<tr>
<th>PSI</th>
<th>6 lpm</th>
<th>8 lpm</th>
<th>10 lpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 psi</td>
<td>1 heure 53 minutes</td>
<td>1 heure 23 minutes</td>
<td>1 heure 8 minutes</td>
</tr>
<tr>
<td>6 psi</td>
<td>1 heure 25 minutes</td>
<td>1 heure 3 minutes</td>
<td>51 minutes</td>
</tr>
<tr>
<td></td>
<td>56 minutes</td>
<td>42 minutes</td>
<td>34 minutes</td>
</tr>
<tr>
<td></td>
<td>28 minutes</td>
<td>21 minutes</td>
<td>17 minutes</td>
</tr>
</tbody>
</table>

Durée de la bouteille d'oxygène
Cylindre « M », 3 540 litres d'oxygène

<table>
<thead>
<tr>
<th>PSI</th>
<th>6 lpm</th>
<th>8 lpm</th>
<th>10 lpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 psi</td>
<td>8 heures 40 minutes</td>
<td>5 heures 51 minutes</td>
<td>4 heures 40 minutes</td>
</tr>
<tr>
<td>6 psi</td>
<td>6 heures 30 minutes</td>
<td>4 heures 14 minutes</td>
<td>3 heures 23 minutes</td>
</tr>
<tr>
<td></td>
<td>4 heures 20 minutes</td>
<td>2 heures 36 minutes</td>
<td>2 heures 15 minutes</td>
</tr>
<tr>
<td></td>
<td>2 heures 10 minutes</td>
<td>59 minutes</td>
<td>47 minutes</td>
</tr>
</tbody>
</table>

Durée de la bouteille d'oxygène
Cylindre « C », 6 900 litres d'oxygène

<table>
<thead>
<tr>
<th>PSI</th>
<th>6 lpm</th>
<th>8 lpm</th>
<th>10 lpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 psi</td>
<td>17 heures 30 minutes</td>
<td>13 heures 0 minute</td>
<td>10 heures 30 minutes</td>
</tr>
<tr>
<td>6 psi</td>
<td>13 heures 0 minute</td>
<td>9 heures 50 minutes</td>
<td>7 heures 50 minutes</td>
</tr>
<tr>
<td></td>
<td>8 heures 45 minutes</td>
<td>6 heures 30 minutes</td>
<td>5 heures 15 minutes</td>
</tr>
<tr>
<td></td>
<td>4 heures 20 minutes</td>
<td>3 heures 15 minutes</td>
<td>2 heures 35 minutes</td>
</tr>
</tbody>
</table>
Manuel de sauvetage minier de l'Ouest du Canada

Chapitre 10 Feu
OBJECTIFS
Le feu représente un danger majeur dans le sauvetage et le traitement de victimes. Des structures et de l'équipement en feu doivent être éteints efficacement afin de secourir les personnes emprisonnées et blessées, en plus de minimiser les dommages à l'infrastructure. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- Les composantes de l'équipement de protection individuelle servant lors de sauvetage en cas d'incendie;
- Les caractéristiques fondamentales du comportement du feu;
- Les catégories, phases et dangers du feu;
- Les classifications, types et agents des extincteurs;
- Les conditions spéciales comme la ventilation, les feux d'équipement et les BLEVE.

Les renseignements que contient le présent chapitre ne préparent ni ne certifient aucunement le sauveteur pour ce qui est de combattre des incendies structurels intérieurs. Travaillez toujours selon vos compétences.

ÉQUIPEMENT DE PROTECTION INDIVIDUELLE
La tenue de feu (tenue d'intervention) constitue la tenue de protection requise pour effectuer un sauvetage en la présence de feu. Cet équipement doit faire l'objet d'une recherche avant de procéder à l'achat, et ce, dans le but de veiller à ce qu'il réponde aux normes actuelles applicables et aux exigences du site. La tenue de sauvetage cotée pour sa résistance au feu est composée des éléments suivants :

- **Casque** : Protège la tête contre les blessures.
- **Capuchon de protection** (passe-montagne) : Protège des parties du visage qui ne sont pas couvertes par le collet ou le casque.
- **Pantalon et manteau de feu** : Protège le corps contre la chaleur, les coupures et les abrasions.
- **Gants** : Protège les mains contre la chaleur, les coupures et les abrasions.
- **Bottes de feu** : Protège les pieds contre les coupures et les abrasions, du haut au bas.
- **Protection des yeux** : Protège les yeux du porteur contre les matières étrangères.
- **Protection de l'ouïe** : Protège les oreilles contre les bruits excessifs.
- **Protection des voies respiratoires** : Protège contre les gaz chauffés et les atmosphères toxiques et à faible teneur en oxygène.
- **Dispositif d'alarme personnel (DAP)** : Intégré dans l'appareil de respiration ou fixé sur un sauveteur.

Entretien, nettoyage et entreposage de l'EPI
- Il faut suivre les directives du fabricant pour s'assurer de l'entretien, le nettoyage et l'entreposage adéquats.

Tout l'équipement utilisé doit respecter les lois, normes et règlements pertinents en matière de santé et de sécurité. Pendant un incident, il est possible que les sauveteurs soient exposés à des dangers biologiques, chimiques, électriques et relatifs au feu. Il faut faire attention de réduire l'exposition à des EPI contaminés pendant et après un incident.
COMPORTEMENT DU FEU

Une compréhension de base des aspects physiques et chimiques d'un feu est essentielle à la sécurité d'un sauveteur minier.

États de la matière
Il existe trois états de la matière : solide, liquide et gazeux/vaporeux.

Deux facteurs peuvent changer l'état de la matière : la chaleur et la pression.

Lorsque des substances sont chauffées, elles ont tendance à passer de l'état solide à l'état liquide, puis à l'état gazeux/vaporeux. Lorsque des substances sont exposées à la pression, elles ont tendance à passer de l'état gazeux/vaporeux à l'état liquide, puis solide. En règle générale, les matières ne prendront pas en feu dans les états solides et liquides. Les matières doivent d'abord passer à l'état gazeux/vaporeux pour prendre en feu.

Facteurs ayant une incidence sur le comportement du feu
Les combustibles solides ont une taille et une forme définies. La surface d'un combustible solide par rapport à sa masse est le premier élément à prendre en considération pour un sauveteur minier. Plus la surface d'une masse donnée est grande, plus le combustible se chauffera rapidement et plus le processus de pyrolyse se fera rapidement. La position physique d'un combustible solide est également importante. Si un combustible se trouve dans une position verticale, le feu s'étendra plus rapidement que s'il se trouve en position horizontale.

La pyrolyse fait référence à la décomposition de matière organique à des températures élevées en l'absence d'oxygène. Pendant la pyrolyse, la matière est chauffée à un point où son état physique (c.-à-d. solide) et sa composition chimique se modifient simultanément. Elle produit des gaz, des vapeurs et des particules.
Combustibles liquides
Les combustibles liquides ont des propriétés physiques qui augmentent la difficulté de leur extinction et les dangers pour le personnel. Les liquides épousent la forme de leur contenant. Lorsqu'un déversement se produit, le liquide prendra la forme du sol et coulera et s'accumulera dans des endroits bas. On fait souvent référence à la densité des liquides par rapport à l'eau en utilisant le terme **gravité spécifique** (eau = 1). Les liquides ayant une gravité spécifique de moins de 1 sont plus légers que l'eau. Ceux ayant une gravité spécifique supérieure à 1 sont plus lourds que l'eau. La plupart des liquides inflammables ont une gravité spécifique inférieure à 1. En général, les liquides d'hydrocarbures ne se mêlent pas à l'eau.

Gaz et vapeurs
Les gaz et les vapeurs ont tendance à épouser la forme de leur contenant, mais n'ont pas de volume particulier. Si la **densité relative** d'un gaz ou d'une vapeur est inférieure à celle de l'air (air = 1), celui-ci aura tendance à s'élever et à se dissiper. Si un gaz ou une vapeur est plus lourd que l'air, il a tendance à demeurer au ras du sol.

Éléments nécessaires pour brûler
Le feu est une réaction chimique connue sous le nom de combustion. Il se définit comme une oxydation rapide d'une matière combustible accompagnée par une libération d'énergie sous la forme de chaleur et de lumière.

Triangle du feu
La forme à trois côtés du triangle du feu décrit les éléments nécessaires pour créer un feu. Lorsque de l'oxygène, de la chaleur et du combustible en proportions adéquates sont combinés, ils créent un feu. Si un des trois éléments est retiré, un feu ne peut exister.

Tétraèdre du feu
Certains produits chimiques et matières prendront feu et brûleront d'une manière qui ne peut être complètement expliquée par l'utilisation du triangle de feu. Parmi les questions qui défient toute explication en vertu de cette théorie, on compte :

- Pourquoi le calcium et l'aluminium brûlent-ils dans une atmosphère d'azote, en l'absence d'oxygène?
- Pourquoi certains combustibles brûlent-ils plus rapidement lorsqu'ils sont soumis à des émanations radioactives (gaz)?
- Pourquoi les flammes réagissent-elles à certaines vibrations soniques et à certaines particules chargées électriquement?
Ces questions peuvent être répondues à l'aide du **tétraèdre du feu**. Une des quatre composantes sert de base et représente la réaction chimique en chaîne. Le fait de supprimer au moins une des quatre composantes rendra ce tétraèdre incomplet et entraînera l'extinction de l'incendie. Cette théorie ne remplace toutefois pas le triangle du feu. On y a tout simplement ajouté une quatrième condition.

Les quatre principales composantes du tétraèdre du feu sont les suivantes :

Agent réducteur (combustible) : Dans le tétraèdre, le combustible se définit comme « une matière pouvant être oxydée ». Le terme « agent réducteur » fait référence au fait que le combustible réduit un agent oxydant.

Agent oxydant (oxygène) : Le terme « agent oxydant » explique la manière dont certaines matières, comme le nitrate de sodium et le chlorate de potassium (qui libèrent leur propre oxygène dans certaines conditions), peuvent brûler dans une atmosphère exempte de toute source d'oxygène extérieure. Par exemple, la poussière de zirconium peut prendre feu dans du dioxyde de carbone sans l'action de l'oxygène.

Parmi les agents oxydants, on compte :

<table>
<thead>
<tr>
<th>Agent oxydant</th>
<th>Acide nitrique</th>
<th>Chlorates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxyde d'hydrogène</td>
<td>Acide sulfurique</td>
<td>Chromates</td>
</tr>
<tr>
<td>Fluor</td>
<td>Dioxyde de manganèse</td>
<td>Nitrates</td>
</tr>
<tr>
<td>Chlore</td>
<td>Dioxyde de plomb</td>
<td>Brome</td>
</tr>
</tbody>
</table>

Température (chaleur) : La température fait référence à la chaleur en tant que quantité d'énergie. La chaleur est de l'énergie en désordre et la température est la mesure du degré de ce désordre.

Réaction chimique en chaîne non stabilisée : Cette réaction en chaîne fait référence à une combustion auto entretenu qui se poursuit lorsque la chaleur du feu rayonne à son tour vers le combustible, même si la source d'inflammation originale n'est plus présente.

Lorsque des combustibles liquides ou solides brûlent, les vapeurs, qui sont éliminées par distillation et transportées dans la flamme, contiennent des atomes ou des molécules qui n’ont pas été consommées lors du processus de brûlage initial. Ces particules libérées peuvent avoir une charge électrique qui attire ou repousse d'autres particules.

Cette zone, qui se trouve entre la vapeur/les gaz et la flamme visible, s'appelle l’**interface de flamme**. Tout juste en haut de cette zone, les molécules d’oxygène existent en nombre suffisant pour produire des réactions d'énergie, qui créent de la lumière sous la forme de flammes. Cette zone est alimentée par l’oxygène tiré dans l’air lorsque les courants d’air se déplacent dans le vide créé par les vapeurs ou les gaz chauffés qui montent.

Ce processus se poursuit à la grandeur de la flamme. La structure moléculaire de la matière est détruite et les atomes libérés se combinent avec d'autres radicaux et éléments qui sont attirés dans le processus afin de former de nouveaux composés, qui sont à nouveau détruits par la chaleur.

Les sous-produits finaux s'échappent ensuite de la flamme sous la forme de fumée et de vapeur. Puisque le carbone est un des éléments les plus difficiles à enflammer, la majeure partie de la fumée visible est composée de particules de carbone non brûlées. Il ne s'agit pas d'un processus étape par étape. Toutes les étapes se produisent simultanément à des degrés d'intensité variables partout dans la flamme.
Extinction

Selon le tétraèdre du feu, il existe quatre méthodes de suppression d'un incendie :
- Retirer l'agent réducteur
- Exclure l'agent oxydant
- Réduire la température
- Interrompre la réaction chimique en chaîne

Interrompre la réaction chimique en chaîne

Le fait de vaporiser des agents chimiques liquides et secs éteint le feu plus rapidement que la même quantité d'autres agents d'étouffement. Lorsque ces agents d'extinction sont ajoutés à un feu, ils libèrent des atomes qui se combinent avec les molécules mises en cause dans la réaction chimique en chaîne. Les nouvelles molécules formées par ce processus ne se combinent pas avec l'oxygène dans l'air qui entretient le feu, ce qui interrompt la réaction en chaîne.

CONCEPTS ET DÉFINITIONS

Températures d'inflammation

La température d'auto-inflammation est la température à laquelle une matière prendra feu spontanément, sans source d'inflammation externe.

Le point d'inflammabilité est la plus basse température à laquelle un combustible produira suffisamment de vapeurs pour prendre feu lorsqu'exposé à une source d'inflammation externe.

Le point de feu est la température à laquelle un combustible liquide produira suffisamment de vapeurs pour entretenir la combustion une fois le feu allumé. Le point de feu est habituellement de quelques degrés, supérieur au point d'inflammabilité.

La température d'inflammation fait référence à la température minimale à laquelle la matière doit être chauffée pour produire une combustion soutenue indépendante d'une source de chaleur externe.
Sources d'inflammation
La compression adiabatique met en cause la compression d'un liquide ou d'un gaz produisant de la chaleur. Cette chaleur est générée par des molécules qui se heurtent les unes aux autres ou sur les parois du contenant. Une substance inflammable comprimée assez rapidement peut faire augmenter la température au-delà de la température d'inflammation de la substance.

L'échauffement spontané (auto-échauffement) se produit lorsque la température d'une substance donnée augmente sans la présence d'une source de chaleur externe. La chaleur est dégagée par oxydation, mais dans la majorité des cas, elle se dissipe sans danger. Par contre, en présence de trois conditions données, l'échauffement spontané peut donner lieu à l'inflammation :
- La matière en question retient davantage de chaleur que ce qui est dissipé;
- La production de chaleur est suffisante pour provoquer l'atteinte de la température d'inflammation;
- Il y a suffisamment d'air pour soutenir la combustion.

Un tas de chiffons huileux et des piles de charbon de bois sont de parfaits exemples de conditions favorables réunies.

Les mélanges hypergoliques sont généralement des combustibles utilisés pour propulser des missiles ou des roquettes. Ces liquides sont conçus pour prendre feu lorsqu'ils entrent en contact avec un autre mélange hypergolique et ne requièrent pas de source d'inflammation externe.

Des étincelles statiques sont créées lorsque deux surfaces dures se touchent avec une force suffisante. En règle générale, l'une des deux surfaces est métallique. Ces étincelles peuvent provoquer l'inflammation de toute vapeur ou tout gaz présent.

Sources de chaleur
Au fur et à mesure que la température d'une substance augmente, le mouvement des molécules s'accélère et s'accélère. En tant qu'énergie, la chaleur est la mesure du mouvement moléculaire d'une matière. Puisque les molécules sont constamment en mouvement, toutes les matières contiennent de la chaleur, peu importe à quel point la température est basse. La vitesse des molécules augmente lorsque le corps de la matière est chauffé. Tout ce qui suscite le mouvement des molécules d'une substance entraîne une production de chaleur dans cette substance. Les sources d'énergie calorifique généralement rencontrées dans le monde du sauvetage minier sont :
- L'énergie calorifique chimique
- L'énergie calorifique électrique
- L'énergie calorifique mécanique

L'énergie calorifique chimique est produite lorsqu'une matière combustible absorbe la chaleur provenant d'une source d'inflammation. Il s'agit de la source d'énergie calorifique la plus commune en combustion.

L'énergie calorifique électrique peut entraîner une combustion en relâchant de la chaleur par l'intermédiaire la formation d'arcs électriques, de l'induction ou de la résistance à la circulation d'un courant électrique. L'électricité statique peut également produire une étincelle en mesure d'enflammer des vapeurs et des gaz inflammables.

L'énergie calorifique mécanique est produite soit par la compression, soit par la friction. Le mouvement de deux matières l'une contre l'autre provoque la friction, qui produit de la chaleur ou des étincelles. La compression, quant à elle, produit de la chaleur en mettant un gaz sous pression dans un contenant.
Transmission de chaleur
La chaleur peut voyager à travers un immeuble en flammes par l'un des moyens suivants : par conduction, par convection et par radiation. En règle générale, la chaleur se transmet d'une substance chaude à une substance plus froide.

La conduction désigne le transfert de la chaleur d'un corps à un autre par contact direct, ou par l'entremise d'une matière conductrice thermique intermédiaire. La vitesse du transfert dépend de la conductivité de la matière.

Les bons conducteurs de chaleur sont notamment le cuivre, l'aluminium et le fer. Les mauvais conducteurs de chaleur regroupent notamment les articles de maçonnerie, le bois, les matériaux fibreux, l'air, les liquides et les gaz.

La convection désigne le transfert de chaleur provoqué par le mouvement de l'air ou d'un liquide. Lorsque des liquides et des gaz sont chauffés, ils commencent à bouger. À mesure que l'air chauffé prend de l'expansion et s'élève, l'air plus frais le remplace aux niveaux inférieurs. Les courants de convection sont généralement la cause du mouvement de la chaleur d'un plancher à l'autre, d'une pièce à l'autre et d'une zone à l'autre. Ainsi, la progression des incendies par convection influence la position des zones de lutte et de la ventilation davantage que toute autre méthode de transmission de la chaleur.

Le rayonnement désigne la transmission de l'énergie par ondes électromagnétiques sans l'intervention d'un intermédiaire. Les ondes calorifiques (rayons infrarouges) sont, de par leur nature, semblables aux ondes lumineuses, mais se distinguent par leur longueur et leur énergie. Si un objet est exposé à des ondes de chaleur rayonnante, il absorbera ou reflétera cette chaleur, selon ses propriétés.

La chaleur par rayonnement est l'une des principales causes de propagation d'incendies et exige, en raison de sa portée, des interventions immédiates aux endroits où l'exposition au rayonnement est importante.

Produits de la combustion
Lorsqu'un combustible brûle, il s'en dégage trois produits :

1. L'énergie thermique qui se dégage sous forme de chaleur et de flammes.
2. La fumée (matière particulaire) qui est une matière solide faite de substances non brûlées, ainsi que de substances partiellement et complètement brûlées.
3. La fumée toxique (gaz de combustion) qui se compose de différents gaz produits au cours de la combustion. Voici quelques exemples de ces gaz : monoxyde de carbone, cyanure d'hydrogène et chlore.
CLASSIFICATION DES INCENDIES

Les incendies sont classés selon cinq catégories en fonction d'importantes propriétés, dont les matières en combustion et les moyens d'extinction. La distinction de la classe à laquelle appartient chaque incendie fait partie intégrante de toute intervention de lutte contre les incendies.

Classe « A » – Incendies impliquant des matières combustibles ordinaires comme du papier, du bois et du tissu. Ces incendies exigent un agent extincteur refroidissant, étouffant ou mouillant comme l'eau ou une poudre chimique tout usage.

Classe « B » – Incendies provenant de la combustion de liquides inflammables comme de l'essence, du kérosène et des graisses. Pour ce type d'incendies, les agents extincteurs regroupent notamment le dioxyde de carbone, la poudre extinctrice et la mousse qui a la propriété d'interrompre une réaction chimique en chaîne, de bloquer le passage de l'oxygène et d'empêcher l'émission des vapeurs combustibles.

Classe« C » – Incendies mettant en cause de l'équipement électrique sous tension. L'un des agents extincteurs typiques pour ce type d'incendie est le dioxyde de carbone. Les secteurs de grande valeur sont généralement protégés grâce à des « agents propres » qui ne laissent aucun résidu sur l'équipement électrique. Si l'électricité peut être coupée (équipement mis hors tension), le combustible sous-jacent est souvent celui retrouvé dans les incendies de classe A ou B.

Classe « D » – Incendies liés à la combustion de métaux combustibles comme le magnésium, le potassium, le lithium, le titane et l'aluminium. Des agents extincteurs faits de poudre extinctrice spéciale sont nécessaires pour les incendies de cette classe, et doivent être conçus précisément pour le métal dangereux en question. Si aucun agent extincteur du type nécessaire n'est accessible, il est possible d'utiliser du sable sec. **De l'eau ne doit en aucun cas être utilisée pour éteindre ce type d'incendie.**

Classe « K » – Incendies mettant en cause des appareils électroménagers commerciaux pour la cuisine et des huiles végétales ou animales, ou encore des graisses, dont la température est élevée. Pour éteindre ce type d'incendie, un agent extincteur mouillé à faible pH fait d'acétate de potassium est nécessaire.
PHASES DES INCENDIES

Lorsqu'un incendie est confiné dans un immeuble ou une pièce, la mise en œuvre de procédures de ventilation soigneusement calculées et exécutées est essentielle pour prévenir tout autre dommage et réduire le danger. Pour mieux comprendre un incendie de ce type, il suffit de procéder à un examen de ses quatre phases progressives.

- Naissance
- Croissance
- Développement complet
- Décroissance

Phase de naissance (inflammation)
La phase de naissance débute lorsque tous les éléments du tétraèdre du feu sont réunis et que la combustion commence. L'oxygène contenu dans l'air n'est pas suffisamment réduit et le feu produit des gaz. Pendant cette phase, la température de la pièce n'augmentera que très légèrement.

Phase de croissance
Pendant la phase de croissance, l'air riche en oxygène est attiré vers les flammes alors que le phénomène de convection (l'élévation des gaz chauffés) guide la chaleur vers les secteurs les plus élevés de la zone confinée. Les gaz chauffés se propagent alors latéralement de cette section élevée vers le bas, forçant ainsi l'air plus frais à rejoindre les niveaux inférieurs et, éventuellement, provoquant la combustion de toutes les matières combustibles se trouvant dans les niveaux supérieurs de la pièce. Ce processus est connu sous le nom de stratification thermique. Davantage de matières combustibles s'embrasent et le feu gagne en intensité. Un embrasement généralisé peut survenir spontanément et rapidement lors du dégagement d'une grande quantité de chaleur et pendant la phase suivante de l'incendie.

Phase de développement complet
Lorsque l'incendie est pleinement développé, l'oxygène se consume rapidement et la chaleur atteint son paroxysme. Toutes les matières combustibles de la pièce brûlent et produisent de grandes quantités de gaz de combustion. L'incendie se poursuivra aussi longtemps qu'il restera du combustible et de l'oxygène.
Phase de décroissance
Pendant la phase de décroissance, les flammes peuvent s'éteindre et les combustibles ou l'oxygène sont pratiquement épuisés. La combustion ne se limite plus qu'à des brûlures rougeoyantes. Toutefois, l'incendie continue de couver et la pièce se remplit entièrement d'une fumée dense et de gaz de combustion. Avec le temps, l'incendie s'éteindra.

DANGERS POSÉS PAR LA PROGRESSION D'UN INCENDIE

Un embrasement sporadique (tourbillon de flammes) se produit lorsque des gaz combustibles non brûlés dégagés pendant la phase de naissance ou de croissance d'un incendie s'accumulent au plafond. Lorsque ces gaz se mélangent à l'oxygène et atteignent leur zone d'inflammabilité, ils s'embrasent et un front de feu (des langues de feu qui enflammment des couches supérieures de fumée) se développe et croît très rapidement, en ondulant sur le plafond.

Un embrasement généralisé désigne la transition entre les phases de croissance et de développement complet d'un incendie. Il se produit lorsque les surfaces et le contenu au cœur de l'incendie sont chauds et que les gaz dégagés par la pyrolyse s'embrasent. Les flammes se répandent sur presque toutes les surfaces touchées de l'espace au même moment.

Voici les signes précurseurs d'un embrasement généralisé :
- Fumée noire dense;
- Gaz de combustion qui commencent à envahir la zone de l'incendie;
- Embrasement sporadique visible.
Une **contre-explosion (explosion de fumée)** se produit en règle générale pendant la phase de décroissance, c'est-à-dire lorsque le feu couve. Si l'oxygène est insuffisant, les gaz non brûlés peuvent s'accumuler sous forme de poches à l'échelle de la structure ou envahir l'intégralité de la structure. Dans de telles conditions, il suffit d'un apport suffisant en air frais (oxygène) pour déclencher une combustion très rapide de ces gaz, dont l'expansion peut être suffisante pour provoquer une explosion.

L'intensité de la contre-explosion dépend du degré de confinement, de la quantité de gaz chauffés et du taux et du volume d'air frais (oxygène) qui pénètre dans la zone touchée. Les dangers liés à de telles conditions peuvent être atténués grâce à une ventilation adéquate.

Signes de contre-explosion imminente :
- Peu de flammes visibles, voire aucune;
- Fumée jaillissant des fissures sous l'effet de la pression, p ex. autour des fenêtres ou des portes;
- Fumée parfois aspirée de nouveau vers l'intérieur;
- Fumée qui s'échappe par bouffées ou par intermittence;
- Fumée noire qui se transforme en fumée dense grise et jaune;
- Fenêtres noircies ou tachées par la fumée.
La *stratification thermique* est provoquée par la convection et désigne la tendance des gaz à former des couches en fonction de leur température. Ce processus est également connu sous les noms de stratification de la chaleur ou de bilan thermique. Les gaz les plus chauds sont plus enclins à s'accumuler aux niveaux les plus hauts; il s'agit là d'un phénomène connu sous le nom de propagation aux étages. Les gaz les plus froids, quant à eux, s'accumulent aux niveaux inférieurs. La stratification thermique est perturbée lorsque de l'eau est versée directement sur une couche sans la présence d'une ventilation adéquate. Ceci provoque la formation de vapeur et de fumée, l'augmentation des températures et la diminution de la visibilité au niveau le plus bas, entravant ainsi le travail des sauveteurs.

EXTINCTEURS

Classification des extincteurs

La classe d'un extincteur est désignée sous la forme d'un chiffre accompagné d'une lettre. Elle apparaît sur l'étiquette apposée sur l'appareil par les Laboratoires des assureurs du Canada (ULC) ou un autre organisme reconnu.

Le chiffre désigne le potentiel d'extinction relatif approximatif de l'extincteur. En outre, il représente l'approximation du nombre de pieds carrés (0,09 m² = 1 pi²) de la profondeur appréciable de liquide inflammable qui peut être éteint. La profondeur appréciable est définie comme une profondeur de liquide supérieure à 6 mm (¼ po).

La lettre désigne quant à elle la classe de l'incendie.

Le nombre désigne les « unités » du potentiel d'extinction et ne représente en aucun cas la taille, la capacité ou la quantité d'agents extincteurs utilisée. Cette classification est basée sur une utilisation par un opérateur non formé. Il est attendu qu'un expert puisse éteindre jusqu'à 2,5 fois plus de feu qu'un novice avec la même quantité d'agent.

1A = l'agent contenu est équivalent à 4,7 L (1,25 gallon US) d'eau.
B = destiné à éteindre la superficie en pieds carrés d'un incendie de classe B.
C = agent non conducteur.

Exemples :

- **4A 60B C** = l'agent contenu équivaut à 18,8 L (5 gallons US) d'eau et est destiné à éteindre un incendie de classe B d'une superficie de 5,6 m² (60 pi²). L'agent est également non conducteur.
- **10A 80B C** = l'agent contenu équivaut à 47 L (12,5 gallons US) d'eau et est destiné à éteindre un incendie de classe B d'une superficie de 7,4 m² (80 pi²). L'agent est également non conducteur.
Types d'extincteurs

Remarque : Il est essentiel que les directives d'utilisation soient parfaitement comprises. Chaque extincteur doit être complètement rempli, conservé à l'endroit qui lui est réservé et prêt à être utilisé.

Extincteur à pompe manuelle
En règle générale, réservé exclusivement aux agents à base d'eau. Cet extincteur est doté d'une pompe manuelle à double action qui projette de l'eau en un mouvement vertical ou par vagues. Ces extincteurs sont généralement de classe A uniquement.

Extincteur à pression permanente
Le gaz propulseur et l'agent extincteur sont entreposés dans un contenant cylindrique unique. Cet extincteur est doté des éléments suivants :
- Manomètre
- Poignée de transport
- Gâchette d'expulsion avec goupille ou sceau d'inviolabilité
- Parfois muni d'un tuyau

Ce type d'extincteur peut contenir la plupart des agents d'extinction, notamment :
- Eau
- Agent formant un film flottant (AFFF)
- Poudre extinctrice
- Poudre chimique (y compris la poudre tout usage)

Ces extincteurs peuvent être classés comme convenant à une combinaison des classes « A », « B » et « C », ainsi qu'à la classe « D ». Il convient de vérifier l'étiquette.

Extincteur à pression auxiliaire
Le gaz propulseur se trouve dans une cartouche séparée. Cette cartouche est d'ordinaire fixée à l'extérieur de la bouteille, mais peut également se trouver à l'intérieur, près de l'agent extincteur. Ce type d'extincteur contient principalement :
- Poudre extinctrice
- Poudre chimique (y compris la poudre tout usage)

Ces extincteurs peuvent être catégorisés comme convenant aux incendies de classe « A », « B », « C » ou « D », ou à une combinaison de ces classes.
Extincteur à projection autonome
Dans ce type d'extincteur, le gaz propulseur est l'agent d'extinction. En effet, l'agent a une pression de vapeur suffisante pour s'expulser lui-même lors de l'activation de l'extincteur. Ces extincteurs peuvent être catégorisés comme convenant aux incendies de classe « A », « B », « C » ou « D », ou à une combinaison de ces classes.

Extincteurs sur roues et appareils fixes
L'emplacement idéal de ces appareils est établi par des spécialistes en protection contre les incendies en vue de minimiser des risques précis dans la plupart des cas, notamment près des stations de carburant et de lubrifiant. Ces extincteurs peuvent être catégorisés comme convenant aux incendies de classe « A », « B », « C » ou « D », ou à une combinaison de ces classes.
Agents extincteurs
Les sauveteurs miniers doivent connaître les différents agents extincteurs offerts ainsi que les classes d'incendie auxquelles ils conviennent.

<table>
<thead>
<tr>
<th>Agent extincteur</th>
<th>Classes</th>
<th>Avantages</th>
<th>Limites</th>
</tr>
</thead>
</table>
| Eau | A | - Non toxique, très répandu, efficace
 - Passe de la forme liquide à la forme gazeuse, en absorbant de la chaleur pendant le processus
 - Peut être mise sous pression
 - Rayon d'action et pénétration avantageux
 - Absorbe plus de chaleur par volume que tout autre agent | - Ne convient d’ordinaire qu’aux incendies de classe A
 - Conductrice |
| Dioxyde de carbone | B, C | - Ne laisse aucun résidu
 - Incongelable | - Rayon d'action limité
 - Sensible au vent
 - Peut se révéler dangereux lorsqu'utilisé dans un espace clos ou non ventilé
 - Provoque un choc thermique froid dans l'équipement électrique |
| Poudre chimique (base commune standard) | B, C | - Incongelable
 - Peut être utilisée en présence de jets d'eau et de brouillard
 - Peut être utilisée en présence de vent | - Laisse des résidus
 - Peut être corrosive
 - Rayon d'action limité
 - Effet refroidissant limité |
| Poudre chimique tout usage | A, B, C | - Incongelable | - Laisse des résidus
 - Rayon d'action limité
 - Effet refroidissant limité |
| Mousse extinctrice (Deux classes : A et B) | A, B | - La mousse de classe A possède d'excellentes propriétés mouillantes et pénétrantes en raison de sa faible tension superficielle.
 - La mousse de classe B peut permettre à l'eau de flotter sur des combustibles qui sont plus légers qu'elle.
 - La mousse de classes A et B permet de créer un écran pare-vapeur sur les combustibles. | - Laisse des résidus
 - Congelable
 - Exige de choisir la mousse qui convient à l'incendie |
| Poudre extinctrice | D | - Agents particuliers réservés aux incendies de classe D | - Une application incorrecte peut provoquer la propagation du feu
 - Pas facilement accessibles
 - Convient uniquement à une sorte de métal |
| Agents mouillés | K | - La saponification permet de transformer les huiles et les graisses en savon ou en mousse.
 - Créent une épaisse couche pour étouffer le feu.
 - Efficaces et faciles à nettoyer. | - Classés comme convenant uniquement aux incendies de classe K. |
Extincteurs portatifs
Voici les composants de base des extincteurs portatifs :

- **Cylindre ou contenant** : Contient l'agent extincteur. Certains extincteurs doivent également renfermer un gaz propulseur, qui peut être contenu de façon interne (pression permanente) ou externe (pression auxiliaire).
- **Poignée** : Utilisée pour transporter l'extincteur et pour le tenir pendant l'utilisation.
- **Buse ou tromblon** : Libère l'agent extincteur. Ce dispositif est fixé à l'ensemble de soupape ou à la fin du tuyau.
- **Mécanismes d'activation** : Libèrent l'agent dès l'activation de l'extincteur.
- **Mécanisme de verrouillage, sceau d'inviolabilité ou goupille** : Prévient la projection accidentelle de l'agent extincteur.
- **Manomètre** : Dans le cas des extincteurs à pression permanente, le manomètre indique la pression de l'agent contenu à l'intérieur. Pour ce qui est des extincteurs à pression auxiliaire, certains sont munis d'une goupille qui indique si l'appareil a été mis sous pression. D'autres extincteurs ne sont dotés d'aucun indicateur.
- **Étiquette** : Précise la classe à laquelle appartiennent l'extincteur et l'agent qu'il contient, et contient les directives d'entretien et d'utilisation.

VENTILATION

La **ventilation** est une tactique essentielle de lutte contre les incendies qui expulse la chaleur, les gaz et la fumée hors d'un immeuble en flammes, et qui permet aux sauveteurs miniers d'agir en toute sécurité pour trouver les personnes prises au piège et de lutter contre l'incendie. En l'absence de ventilation appropriée (p. ex. utilisée au mauvais moment ou endroit), un incendie peut :

- Être beaucoup plus difficile à maîtriser;
- Produire suffisamment de chaleur pour créer un embrasement généralisé;
- Donner naissance à des conditions propices aux contre-explosions;
- Augmenter l'alimentation d'air du feu, lui permettant ainsi de croître et de se propager rapidement.

Ventilation naturelle
- Portes ou fenêtres ouvertes, vent, etc.
- Peut être verticale ou horizontale.

Ventilation mécanique
- Ventilation à pression positive (VPP) – Ventilateurs VPP
- Ventilation à pression négative (VPN) – Extracteurs à fumée

Ventilation par jet d'eau
Brouillard d'eau pulvérisée – Buse de pulvérisation de 60 degrés couvrant 90 % d'une ouverture.

Avantages de la ventilation

- Contribue aux sauvetages.
- Peut être verticale ou horizontale.
- Permet de maîtriser la propagation du feu.
- Accélère le processus de lutte et l'extinction.
- Atténué la propagation aux étages.
- Réduit les risques de contre-explosion.
- Favorise les opérations de sauvetage rapide en diminuant les dommages dus à la fumée, à la chaleur, à l'eau et au feu.
- Atténue les risques pour les sauveteurs.
Éléments à prendre en compte pour procéder à la ventilation en toute sécurité

- Emplacement, durée et portée de l'incendie.
- Type de structure touchée et son âge.
- Voies d'évacuation pour les sauveteurs et les victimes.
- Besoin en matière de ventilation, type de ventilation nécessaire et emplacement de celle-ci.
- Possibilité de réaliser la ventilation de façon sécuritaire.
- Personnel formé, outils et équipement accessibles.

FEUX D'ÉQUIPEMENT

Les sauveteurs miniers ne devraient pas essayer de lutter contre un feu d'équipement, excepté s'ils peuvent le faire de façon parfaitement compétente et qu'ils disposent de l'équipement nécessaire. Ils doivent en outre être au fait des nombreux dangers que recèlent les feux d'équipement. Ces dangers englobent notamment :

- Les quantités de carburant et de lubrifiant;
- Les batteries et dispositifs électriques;
- Les énergies emmagasinées, p. ex. composants hydrauliques, sacs gonflables et pneus;
- Chargement inconnu.

BLEVE (DÉTENTE EXPLOSIVE DES VAPEURS D’UN LIQUIDE EN ÉBULLITION)

Les renseignements contenus dans le présent chapitre ne préparent aucunement le sauveteur à intervenir de façon active lorsqu'une détente explosive des vapeurs d'un liquide en ébullition (BLEVE) est possible. Travaillez toujours selon vos compétences.

Un gaz ou un liquide confiné peut se révéler dangereux, qu’il soit ou non inflammable. Les BLEVE peuvent être provoquées par un incendie qui se trouve à proximité ou qui touche le récipient de stockage, et qui fait ainsi chauffer son contenu et augmente sa pression interne.

Les récipients de stockage sont conçus pour supporter leur pression interne, mais s’ils sont chauffés par une flamme, le métal peut s’affaiblir et, éventuellement, céder. Un récipient de stockage chauffé à un endroit où il n’y a aucun liquide présent pour absorber la chaleur, peut en outre céder plus rapidement.
Bien que les récipients sous pression soient munis d'une soupape de surpression qui permet d'évacuer la pression excessive, un récipient peut tout de même céder si cette pression n'est pas relâchée assez rapidement. En effet, la taille de ces soupapes leur permet de libérer la pression assez rapidement pour qu'elle n'excède pas la capacité du récipient, mais s'il s'avère que cette libération n'est pas suffisamment rapide, cela peut entraîner une explosion. Une soupape de taille appropriée permettra au liquide de bouillir lentement, préservant ainsi dans le récipient une pression constante jusqu'à ce que le liquide ait bouilli et que le récipient soit vide. Si la substance stockée est inflammable et que le récipient cède, le liquide se transforme immédiatement en un nuage de vapeur qui croît rapidement et s'enflamme pour former une immense boule de feu. Les sauveteurs miniers doivent se rappeler qu'une BLEVE peut projeter des débris capables de parcourir de grandes distances.
Chapitre 11 Sauvetage par câble
OBJECTIFS

Le principal objectif d'une intervention de sauvetage en milieu minier est la récupération sécuritaire des victimes, qui se trouvent souvent dans des endroits dangereux et inaccessibles. Ces interventions exigeront souvent le recours à des câbles et des harnais, qui permettront aux membres de l'équipe de sauvetage minier d'atteindre les blessés et de les hisser ou de les descendre vers un endroit sécuritaire. Au terme de ce chapitre, l'apprenant sera en mesure de démontrer une compétence dans ce qui suit :

- L'équipement de protection individuelle pour les sauvetages par câble.
- Les concepts et définitions clés;
- Les câbles, les sangles, le matériel et l'équipement connexe, de même que leurs fonctions lors d'une intervention de sauvetage;
- Comment réaliser plusieurs nœuds, ajuts et amarrages utilisés lors d'intervention de sauvetage;
- Comment préparer des harnais de sauvetage et attacher un patient à une civière de sauvetage;
- Comment mettre en place un système d'ancrage sécuritaire;
- Comment tirer parti des gains mécaniques;
- Comment mettre en place un dispositif d'assurage de sécurité une amarre de système de relâchement.

Introduction

Le principal objectif de toute opération de sauvetage est d'arracher une victime à sa position précaire aussi rapidement que possible, en assurant une sécurité maximale aussi bien pour cette victime que pour les membres de l'équipe de sauvetage.

Les interventions de sauvetage par câble sont dangereuses. La priorité doit être accordée à la sécurité à tout moment, comme lors du choix de l'équipement, des techniques à utiliser et du personnel.

Les interventions de sauvetage techniques sont dangereuses. Pour assurer une bonne gestion des risques, une combinaison d'expérience, de formation et de jugement personnel sûr est essentielle. Les habiletés et techniques présentées dans ce chapitre sont destinées uniquement à des experts en la matière. Il est de votre responsabilité de chercher à obtenir des directives pratiques fiables, de vous procurer de l'équipement de qualité et de respecter les procédures de sécurité.
ÉQUIPEMENT DE PROTECTION INDIVIDUELLE

<table>
<thead>
<tr>
<th>Équipement</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gants : Tous les sauveteurs qui doivent manipuler un câble en mouvement doivent porter des gants protecteurs. Ceux-ci les protégeront contre les brûlures dues au câble et, jusqu'à un certain point, contre les points de pincement. Les gants portés doivent être bien ajustés pour assurer la dextérité et la capacité de préhension. Seuls les gants faits de cuir ou dont la zone des paumes est faite d'épais matériel synthétique doivent être portés.</td>
<td></td>
</tr>
<tr>
<td>Pinces : Utilisées pour ouvrir un mousqueton coincé.</td>
<td></td>
</tr>
<tr>
<td>Couteau ou outil convenable pour couper : Utilisé pour couper les dispositifs coincés. Cet outil doit être aiguisé en tout temps.</td>
<td></td>
</tr>
<tr>
<td>Harnais de sauvetage : Doivent être fabriqués commercialement et certifiés de classe III par la NFPA. Le harnais doit être conçu de manière à offrir deux points d'attache distincts frontaux, l'un au niveau de la poitrine pour permettre d'attacher la victime à une civière, et l'autre au niveau de la taille pour attacher la personne à un dispositif par l’avant. Le harnais doit également comporter un troisième point d'attache, celui-là un point d’attache dorsal D, destiné au système antichute.</td>
<td></td>
</tr>
<tr>
<td>Longes : Servent d'accessoires de fixation pour raccorder le harnais de sauvetage et le point d’ancrage sécuritaire. Les longes doivent être conformes aux lois pertinentes en matière de santé et de sécurité.</td>
<td></td>
</tr>
</tbody>
</table>

Avant de couper tout système coincé, il est primordial de prendre toutes les mesures de sécurité nécessaires.
CÂBLES ET SANGLES

Structure et constitution des câbles
Les câbles sont utilisés pour l'escalade et dans le cadre d'interventions de sauvetage. Pour ce faire, il est essentiel d'être capable d'utiliser correctement les câbles, aussi bien pour les sauvetages en milieu minier souterrain qu'en surface. Une intervention exigeant d'évacuer une personne blessée d'un chantier n'est pas différente d'une autre nécessitant de soulever une victime d'accident au-dessus d'une saillie dans une mine à ciel ouvert ou d'un obstacle naturel dans une exploitation de surface.

Câble synthétique
Les câbles synthétiques ont remplacé les câbles naturels dans le cadre des interventions de sauvetage en milieu minier. En effet, les câbles synthétiques résistent davantage à la moisissure et à la pourriture, et offrent une résistance supérieure pour un diamètre équivalent. De plus, ils résistent à l'abrasion et sont faciles à manipuler.

Corde d'alpinisme
La corde d'alpinisme est un câble qui n'est pas torsadé. Le centre est plutôt fait de brins de fibres de nylon. La gaine est tissée autour de ce noyau de fibres.

La plupart de câbles utilisés dans le cadre des interventions de sauvetage sont des cordes d'alpinisme en nylon. Le noyau en nylon supporte autant que 90 % de la masse de la charge, alors que la gaine protège la corde. Certaines cordes d'alpinisme sont munies d'un revêtement recouvrant la gaine, qui est conçu pour protéger la corde contre l'eau, ainsi que les coupures et les autres dommages. Toutefois, ce revêtement rend la corde glissante et, par conséquent, ne convient pas aux sauvetages par câble.

Corde à faible élasticité (corde statique – sauvetage):
- Le plus solide des câbles communs;
- Gaine plus épaisse, résiste davantage à l'abrasion;
- Généralement plus raide que les cordes d'escalade;
- S'étire d'environ 3 à 5 % avec une charge d'une personne, et de 2 % avec une charge de 91 kg (200 lb).

Corde à grande élasticité (corde dynamique – escalade):
- Ne convient pas aux interventions de sauvetage, excepté si une personne seule doit escalader une structure;
- Gaine plus mince que celle d'une corde statique, donc plus sensible à l'abrasion et à la saleté;
- S'étire d'environ 5 à 9 % avec une charge de 91 kg (200 lb);
- Conçue pour supporter le poids d'une seule personne;
- La grande élasticité permet d'absorber les chocs, p. ex. si le premier de cordée fait une chute (lors d'une montée au-delà des points d'ancrage). Les procédures d'escalade en premier de cordée ne sont pas abordées dans le cadre de ce manuel et de ce programme. Une formation propre au site doit être offerte aux membres des équipes de sauvetage qui peuvent avoir à faire de l'escalade.
Propriétés des câbles

La résistance à la traction est la capacité à résister à la force appliquée lentement au point de rupture, p. ex. avec un poids suspendu à un câble.

La résistance à la rupture désigne le degré de force nécessaire pour briser le câble lors d'une traction directe, comme lors d'un tir à la corde où la force de traction augmente graduellement.

La force de travail de sécurité ou capacité de charge est le poids ou la force qui peut être appliquée à un câble en toute sécurité. La force de travail de sécurité maximale est un pourcentage de la résistance à la rupture.

Le facteur de sécurité est le ratio de la résistance à la rupture par rapport à la force de travail de sécurité maximale. Le facteur de sécurité tient compte de l'usure normale et de la réduction de l'intégrité du câble dans des conditions normales d'utilisation.

Ne considérez en aucun cas le facteur de sécurité d'un câble comme une résistance de réserve permettant de supporter un poids supplémentaire.

Force de travail de sécurité

La force de travail de sécurité est associée à une marge de sécurité, présentée sous forme d'un facteur de dix. Cette marge peut être calculée à l'aide de la formule suivante :

\[SWL = \frac{MBS}{10} \times FTS = \frac{RRM}{10} \]

où FTS désigne la force de travail de sécurité et RRM, la résistance à la rupture minimale.

Informez-vous de la résistance à la rupture auprès de votre fabricant de câbles. Les câbles utilisés dans le cadre d'intervention de sauvetage devraient, au minimum, satisfaire aux lignes directrices pour « l'utilisation générale » indiquées dans la norme NFPA 1983. Chaque câble doit également conserver un facteur de sécurité de 10:1.

Force : Un élément qui provoque ou entrave un mouvement. La formule pour calculer la force est :

\[F = \frac{M(A)}{min} \]

où F est la force, M est la masse et A est l'accélération.

Un newton (N) est une unité utilisée pour désigner le degré de force nécessaire pour faire bouger une masse d'un kilogramme à la vitesse d'un mètre par seconde carrée (1 N = 1 kg m/s²). L'unité de mesure la plus communément utilisée pour rendre les forces rencontrées dans le domaine du sauvetage par câble est le kilonewton (kN, 1 kN = 1 000 N).
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Diamètre du câble</th>
<th>Charge nominale (personne)</th>
<th>Charge nominale (poids)</th>
<th>Résistance à la rupture minimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Câble d'évacuation personnel</td>
<td>7,5 mm (19/64 po) – 9,5 mm (3/8 po)</td>
<td>Une</td>
<td>136 kg (300 lb)</td>
<td>13,5 kN (3 034 lbf)</td>
</tr>
<tr>
<td>Câble de sécurité léger</td>
<td>9,5 mm (3/8 po) – 12,7 mm (1/2 po)</td>
<td>Une</td>
<td>136 kg (300 lb)</td>
<td>20 kN (4 496 lbf)</td>
</tr>
<tr>
<td>Câble de sécurité d'usage général</td>
<td>12,7 mm (1/2 po) – 16 mm (5/8 po)</td>
<td>Deux</td>
<td>272 kg (600 lb)</td>
<td>40 kN (8 892 lbf)</td>
</tr>
</tbody>
</table>

Source: Norme NFPA 1983, Standard on Life Safety Rope and Equipment for Emergency Services

Vérifiez toujours les spécifications du fabricant pour établir la résistance du câble utilisé.

Entretien des câbles de sauvetage

Inspection

- Il convient d’inspecter tout nouveau câble avant la mise en service et après chaque utilisation;
- L’inspecteur Rechercher toutes traces de dommage telles que :
 - Signe d’impact d’un objet
 - Trace de fonte
 - Zone aplatie ou affaiblie à laquelle on ne peut redonner sa forme
 - Renflement et autres irrégularités
 - Coupure ou zone où la gaine laisse voir l’âme
 - Gaine extrêmement glissante
 - Décoloration ou tout autre signe d’exposition à de la contamination

Utilisation

- Éviter de marcher sur les câbles.
- Protéger les câbles des chutes d’objets comme des roches.
- Éviter la saleté ou les particules qui pourraient s’infiltrer jusqu’à l’âme et provoquer des dommages qui ne seraient pas immédiatement visibles.
- Ne pas laisser de câble en mouvement passer au-dessus de câbles ou de sangles stationnaires puisque la friction peut provoquer la fonte.
- Utiliser des protections contre les objets en saillie pour prévenir l’abrasion.
- Éviter de tourner ou de tortiller les câbles.
- Utiliser des moufles qui font quatre fois la largeur du câble utilisé.
- Ne pas fumer près des câbles et de l’équipement de câblage pendant les interventions de sauvetage.

Entreposage

- Protéger les câbles contre l’exposition aux produits chimiques, aux températures élevées et à la lumière directe du soleil.
• Faire sécher, enrouler ou ranger correctement dans un sac après chaque utilisation.
• Garder à jour un registre des stocks et un registre d'utilisation pour chaque câble utilisé.

Nettoyage
• Nettoyer les câbles à la main avec une brosse ou à l'aide d'une machine pour laver les câbles.
• Les câbles peuvent également être lavés dans une machine à laver, mais uniquement s'ils sont correctement tissés et que le produit nettoyant leur convient.

Retrait
• Cesser d'utiliser un câble si son inspection n'est pas satisfaisante ou après cinq ans d'utilisation.
• Cesser d'utiliser un câble s'il présente une grande abrasion, p. ex. si plus de 50 % du câble ou 30 % des fibres de la sangle semblent usés.
• Une fois qu'un câble ne peut plus servir, il convient de le couper en petits morceaux afin qu'il ne puisse plus être utilisé.

Cordage
Il existe deux catégories de cordage de base, chacun ayant sa propre utilité : **Corde Prusik** et **corde accessoire**.

La **corde Prusik** est conçue pour être suffisamment souple et être serrée autour du câble. Un sauveteur doit être en mesure de replier la corde sur elle-même entre deux doigts.
• Cette corde est utilisée pour l'auto sauvetage, l'assurage, les coulisseaux de sécurité et les systèmes de relâchement.
• Une corde Prusik possède un diamètre de 8 à 9 mm si elle est utilisée dans des systèmes de sauvetage par câble, et doit être au minimum de 2 mm plus petite que le câble auquel elle est fixée.

L'expression **corde accessoire** désigne toute corde de petit diamètre faite de nylon, de polyester, de fibre Spectra, de Kevlar ou d'une combinaison de ces matières.
• La corde accessoire n'est pas suffisamment souple pour être utilisée pour confectionner des nœuds de Prusik.
• Les cordes accessoires utilisées dans les amarres de systèmes de relâchement et les autres applications du domaine du sauvetage technique par câble sont faites de nylon à 100 %, et possèdent un diamètre de 8 à 9 mm.

Sangle
Les sangles sont principalement utilisées pour les harnais et les anneaux de corde. Elles peuvent être décrites comme des cordes plates. La **sangle plate** est faite d'une couche unique de matériel, comme les sangles des ceintures de sécurité. La **sangle tubulaire** est utilisée en présence de pans abrupts, puisqu'elle est plus souple. La sangle tubulaire est creuse et forme un tube lorsque l'une des extrémités est insérée dans l'autre. La sangle tubulaire :
• Est parfois préférable à un câble;
• Est faite de nylon ou de polyester;
• Est plus confortable qu'un câble contre le corps dans le cas des harnais;
• Possède une surface large et plate afin de mieux résister à l'abrasion, lorsqu'utilisée dans plusieurs formes de haubannage.
QUINCAILLERIE

Les équipes de sauvetage utilisent plusieurs autres pièces d'équipement dans le cadre de leurs interventions, notamment des mousquetons, des freins mécaniques, de l'équipement de descente, des poulies, des joints toriques en acier, des plaques d'ancrage, des connecteurs triangulaires, des civières et plus encore. Les façons d'utiliser et d'entretenir correctement les articles les plus importants sont décrites ci-dessous.

Les mousquetons sont les connecteurs de métal qui relient entre eux les éléments d'un système de sauvetage. Les principales parties d'un mousqueton sont la tige, la charnière, le système de verrouillage, le doigt et le bec. Les mousquetons utilisés en sauvetage par câble :
- Doivent faire l'objet d'une inspection avant et après chaque utilisation;
- Doivent faire l'objet d'essais conformément aux spécifications du fabricant.

Formes de mousquetons classiques

Les mousquetons sont offerts dans toute une variété de formes. Chaque forme est destinée à une utilisation particulière. La forme la plus solide est celle du mousqueton en D. La tige du mousqueton en D est plus longue que le côté doigt; ainsi, le haut et le bas du mousqueton sont inclinés de manière à diriger le poids vers la tige. Cela permet aux câbles fixés au mousqueton de glisser en bonne position près de la tige, c'est-à-dire là où le mousqueton est le plus solide.

Avertissement : Les mousquetons à verrou peuvent s'ouvrir une fois qu'ils ont été verrouillés.

Avertissements supplémentaires à l'égard des mousquetons à verrou
Si un mousqueton se déverrouille souvent sans cause apparente, il convient de cesser de l'utiliser. Les mousquetons sont conçus pour se verrouiller sous la légère pression d'un doigt. Pour garantir leur sécurité durant les operations sur pans abrupts, certaines personnes vont trop resserrer le mécanisme de verrouillage de leur mousqueton et seront ensuite incapables de le déverrouiller. Cela se produit fréquemment lorsqu'une personne resserre excessivement le mousqueton d'un baudrier-cuissard alors qu'une autre personne se trouve dans le harnais.

Si le mécanisme de verrouillage d'un mousqueton se coincé en raison d'un serrage excessif, la procédure suivante permet, en règle générale, de la dégager :
1. Si le mousqueton ne se trouve pas déjà sur un baudrier-cuissard, le fixer sur l'un d'eux.
 Demander au porteur de se placer dans un endroit sécuritaire, par exemple loin du rebord de tout escarpement.
2. Fixer le mousqueton à l'aide d'un anneau de corde, à un ancrage convenable.
3. Demander au porteur de s'asseoir afin de permettre au mousqueton de se replacer alors qu'il est attaché au point d'ancrage.
4. Dans plusieurs cas, la vis de blocage peut être alors être facilement relâchée.
5. Si le mécanisme ne se relâche pas, enrouler étroitement un court morceau de sangle autour de
la vis de blocage pour améliorer la prise.
6. Si cela ne fonctionne toujours pas, l'usage de pinces peut se révéler la seule option possible.

Soin et entretien
- Ne pas échapper ou cogner contre d'autres objets.
- Éviter la contamination chimique ou particulaire.
- Pour empêcher l'accumulation de particules, éviter d'appliquer de l'huile de manière excessive.

Tout l'équipement de sauvetage doit être entretenue et utilisé conformément aux recommandations du fabricant.

Utilisation adéquate des mousquetons
Un mousqueton sera plus résistant si la charge est portée sur sa tige. Une répartition incorrecte de la charge entraînera son transfert vers les sections plus faibles du mousqueton. Ceci réduira énormément la résistance de l'accessoire d'ancrage.

Connecteurs triangulaires
Les connecteurs triangulaires sont conçus pour supporter une charge en trois points différents. Ils sont extrêmement utiles pour l'ancrage ou le câblage lorsque les mousquetons ne conviennent pas, p. ex. lorsque la charge doit être supportée du mauvais côté d'un mousqueton.

Poulies
Les poulies servent à modifier la direction de la traction d'un câble. Certaines d'entre elles sont faites pour être utilisées pour le sauvetage d'une seule personne. La résistance à la rupture minimale exigée par la section sur l'utilisation générale de la norme de la NFPA est de 36 kN (8 093 lbf). Dans le cadre d'un sauvetage par câble, le ratio poulie-câble doit être de 4:1, ce qui signifie que la taille de la poulie (aussi connue sous le nom de « diamètre d'enroulement ») est quatre fois supérieure au diamètre du câble.
Types de poulies

La **poulie à réa simple et la poulie à deux réas** sont principalement utilisées pour composer des systèmes à gain mécanique. La plupart des poulies à deux réas sont dotées d'un ringot. Il s'agit d'un point d'ancrage permettant d'accrocher un mousqueton pour fixer l'extrémité du câble. La **poulie pare-prusik** est conçue pour empêcher le nœud de Prusik de passer au travers d'elle. La **poulie à pivot avec plaques latérales** est munie, comme le dit son nom, de plaques latérales qui peuvent être ouvertes alors que le câble supporte une charge, ce qui la rend plus polyvalente que les poulies classiques. La poulie à pivot est offerte avec un ou deux réas.

La **poulie passe-nœud** possède un large col qui permet aux nœuds ou aux ajuts (qui fixent deux câbles ensemble) de passer au travers d'elle. Ce type de poulie peut également être utilisé pour les changements directionnels ou la protection contre les objets en saillie.

Dispositifs descenseurs

Si un choix est possible lors des interventions de sauvetage par câble, mieux vaut opter pour des descendeurs parce qu'ils :

- Sont plus simples;
- Exigent moins de câblage;
- Utilisent la gravité à leur avantage;
- Exigent, pour leur utilisation, un minimum de main-d'œuvre.

D'autres dispositifs de fabrication commerciale sont approuvés pour les systèmes de sauvetage. L'utilisation de cet équipement exige une formation particulière. Si vous devez utiliser ces dispositifs, respectez toutes les directives du fabricant.

Le **descendeur à barrettes** est composé de plusieurs barrettes fixées sur un support conçu pour freiner. La quantité de friction appliquée sur le câble peut être ajustée en ajoutant ou en retirant des barrettes, ainsi qu'en augmentant la distance entre elles. Les descendeurs à barrettes :

- Possèdent une résistance à la rupture minimale de 4 536 kg (10 000 lb);
- Doivent faire l'objet d'essais annuels.
- S'arriment en faisant deux tours de câble autour du support, et deux demi-clés autour de la ligne de charge principale.
- Sont des dispositifs à friction variable. Certains possèdent une seconde barrette plus épaisse, ou super barrette, qui améliore la maîtrise et contribue à dissiper la chaleur.
• Permettent une utilisation rectiligne et le contrôle simultané de deux câbles. Peuvent contenir jusqu'à six barrettes; les barrettes usées peuvent être remplacées.
• Doivent être utilisés conformément aux recommandations du fabricant. Pour éviter les chutes, il est essentiel de veiller à pré-tensionner le descendeur. Les sauveteurs doivent pré-tensionner les descendeurs à barrettes chaque fois qu'ils sont utilisés. Pour pré-tensionner un descendeur à barrettes :
 1. Déterminer un point à l'aplomb. Tenir fermement le nœud situé du côté de la charge à environ 5 cm (2 po) au-delà de l'extrémité d'accès, et passer le câble autour de la première barrette du descendeur.
 2. Attacher le sauveteur retenant la charge, en veillant à ce que le sauveteur placé du côté de la charge maintienne le point d'aplomb.
 3. L'autre sauveteur peut alors enfiler le câble dans les barrettes restantes, et verrouiller le descendeur à barrettes.
 4. Fixer le dispositif d'assurage de sécurité à la charge, et ensuite à la ligne principale. Faire lentement coulisser le système d'assurage jusqu'à ce qu'il soit prêt.

Le joint torique en acier est utilisé dans les systèmes d'ancrage pour câblage, mais aussi comme point d'attache principal.
• Il est extrêmement solide et sa marge de résistance est d'au moins 20:1.
• Chaque joint peut accueillir une ligne principale, une ligne de dispositif d'assurage et un harnais de sécurité.
• Un joint torique en acier a un diamètre intérieur de 7,6 cm (3 po).

Les plaques d'ancrage destinées aux systèmes d'ancrage constituent d'excellents points de rassemblement et permettent aux sauveteurs de mettre en place leurs systèmes rapidement et proprement.

Les articles de protection contre les objets en saillie et les ancrages protègent le câble des dommages et sont généralement utilisés lors de la fixation du câblage aux ancrages. Il est possible de se procurer des articles de fabrication commerciale, ou encore d'improviser une fois sur les lieux. Tous les moyens nécessaires devraient être pris pour empêcher le câble d'être endommagé.
Civières de sauvetage

Une grande variété de civières est offerte sur le marché, mais seules celles conçues spécifiquement pour le sauvetage par câble devraient être utilisées. En effet, les civières de transport et d’évacuation ne sont pas conçues pour supporter les mêmes contraintes. La plupart des civières sont faites de plastique ou de métal et certaines sont même dotées d’un dispositif de protection pour la tête et de points d’attache pour les mousquetons. Il convient de consulter toutes les directives et spécifications du fabricant avant d’établir quelle civière doit être utilisée. Toutes les civières devraient faire l’objet d’une inspection avant et après chaque utilisation.

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métal</td>
<td>Possède une structure faite de tubes métalliques. Certaines présentent un fond recouvert d’un filet ou de plastique. Il s’agit d’un type de civière extrêmement élémentaire.</td>
</tr>
<tr>
<td>Plastique</td>
<td>Faite d’une coquille de polyéthylène haute densité, accompagnée d’une structure en métal. Très efficace sur les surfaces sales, gazonnées ou enneigées.</td>
</tr>
<tr>
<td>Plastique souple</td>
<td>Civière portative et légère, facile à faire passer par les petites ouvertures.</td>
</tr>
<tr>
<td>Deux pièces</td>
<td>Facile à transporter jusque dans les secteurs éloignés.</td>
</tr>
<tr>
<td>Fibre de verre ou matériau composite</td>
<td>Civière durable et légère, insensible aux températures froides extrêmes.</td>
</tr>
</tbody>
</table>
NŒUDS, AJUTS ET AMARRAGES

Les nœuds sont des composantes essentielles de toutes les interventions de sauvetage par câble. De plus, les nœuds utilisés dépendent de la situation et du milieu où se déroule le sauvetage. Les sauveteurs doivent être en mesure de réaliser les nœuds, ajuts et amarrages suivants dans toutes sortes de situations. Lors du choix d'un nœud, les facteurs suivants doivent être pris en considération :

- Il doit avoir été prouvé que le nœud est sécuritaire pour l'utilisation prévue;
- Le nœud doit être suffisamment solide pour remplir sa fonction pendant l'intervention;
- Le nœud doit être facile à nouer et à dénouer.

Tous les nœuds réalisés sur un câble en diminuent la résistance. Par conséquent, le nœud choisi ne doit pas réduire la résistance de la corde au-delà du facteur de sécurité acceptable.

Pour visionner des animations sur la manière de réaliser les nœuds, ajuts et amarrages suivants, visiter le site http://www.animatedknots.com.

Terminologie

Nœud : Un moyen de connexion permettant d'attacher une sangle ou un câble à lui-même.

Ajut : Un type de nœud utilisé pour relier entre elles les extrémités de deux câbles ou sangles.

Amarre : Un type de nœud qui permet d'attacher un câble ou une sangle à un autre objet d'une manière telle que, si cet objet est retiré, le nœud se défait.

Boucle ouverte : Une boucle ouverte est une courbure ouverte formée lorsqu'un câble est replié sur lui-même sans que les extrémités se croisent.

Partie dormante : La section fixe d'un câble pendant le nouage d'un nœud.

Bout libre : L'extrémité du câble qui est enfilée pour réaliser un nœud.

Boucle fermée : Une boucle fermée est formée lorsqu'un câble est replié sur lui-même, et que ses extrémités se croisent.

Queue : L'extrémité libre du câble qui ressort d'un nœud.
Nœud de sécurité : Utilisé pour prévenir l’effilochage et pour empêcher le glissement au travers d’un bloc, d’un trou ou d’un autre nœud.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Remarques</th>
<th>Diagramme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nœud simple</td>
<td>Nœud de sécurité de base</td>
<td></td>
</tr>
<tr>
<td>Nœud en huit</td>
<td>Nœud de sécurité de base</td>
<td></td>
</tr>
</tbody>
</table>

Nœuds

<table>
<thead>
<tr>
<th>Nom</th>
<th>Remarques</th>
<th>Diagramme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nœud de chaise</td>
<td>Une boucle qui ne coincera, ne glissera ou ne se déferra jamais.</td>
<td></td>
</tr>
<tr>
<td>Nœud de chaise double</td>
<td>Pour créer une boucle double.</td>
<td></td>
</tr>
<tr>
<td>Boucle avec nœud en huit sur le double</td>
<td>Pour créer une boucle qui constitue un point d’attache principal.</td>
<td></td>
</tr>
<tr>
<td>Nœud en double-huit</td>
<td>Pour créer deux boucles qui constituent un point d’attache principal.</td>
<td></td>
</tr>
<tr>
<td>Nœud papillon</td>
<td>Pour créer, dans la partie dormante du câble, une boucle qui constitue un point d’attache permettant un usage multidirectionnel.</td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Remarques</td>
<td>Diagramme</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Nœud d’écoute d’ajut double</td>
<td>Pour attacher ensemble deux câbles de taille différente.</td>
<td></td>
</tr>
<tr>
<td>Nœud de pêcheur double</td>
<td>Pour attacher deux câbles de même diamètre.</td>
<td></td>
</tr>
<tr>
<td>Nœud de sangle</td>
<td>Pour attacher deux sangles ensemble.</td>
<td></td>
</tr>
<tr>
<td>Nœud de huit tissé</td>
<td>Pour joindre ensemble les extrémités de deux câbles, de manière à créer un câble plus long.</td>
<td></td>
</tr>
<tr>
<td>Nœud de huit</td>
<td>Pour ancrer un câble à un objet sans faire appel à une autre pièce d'équipement.</td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Remarques</td>
<td>Diagramme</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Nœud de cabestan</td>
<td>Pour fixer un câble à une barre ou un poteau. Il est souvent utilisé comme point de départ pour l'amarrage.</td>
<td></td>
</tr>
<tr>
<td>Nœud de bois</td>
<td>Utilisé pour hisser ou traîner des morceaux de bois ou des tuyaux.</td>
<td></td>
</tr>
<tr>
<td>Demi-cabestan</td>
<td>Utilisé pour assurer une personne seule en présence d'une pente faible.</td>
<td></td>
</tr>
<tr>
<td>Nœud de Prusik</td>
<td>Nœud d'amarrage autobloquant utilisé pour attacher un câble de grand diamètre sans y faire de nœud. Pour le hissage et les dégagements, il est recommandé d'utiliser un nœud de Prusik à triple enroulement.</td>
<td></td>
</tr>
<tr>
<td>Nœud autobloquant</td>
<td>Pour ancrer un câble.</td>
<td></td>
</tr>
<tr>
<td>Deux tours morts et deux demi-clés</td>
<td>Pour fixer un câble à une barre ou un poteau. Peut supporter de lourdes charges sans glisser ou coincer.</td>
<td></td>
</tr>
<tr>
<td>Nœud de gueule de raie</td>
<td>Pour fixer un câble à des crochets et des anneaux.</td>
<td></td>
</tr>
</tbody>
</table>
HARNAIS

Les harnais sont conçus pour protéger et soutenir le corps de leur utilisateur. Le type de harnais utilisé varie en fonction de la tâche à réaliser. Dans le domaine du sauvetage par câble, les harnais sont principalement utilisés pour hisser ou descendre des victimes.

Harnais en papillon (Fig. 11-43)
Le harnais en papillon est utilisé uniquement lorsque les sauveteurs ne disposent que d'un câble pour hisser ou faire descendre une victime d'un point à un autre en toute sécurité. Il n'est pas destiné à être utilisé comme harnais de travail ou de sauvetage. Toute entrave à la circulation sanguine d'une partie du corps de la victime peut avoir de graves répercussions. Pour confectionner ce type de harnais, le diamètre du câble doit être de 11 mm ou plus. Les sauveteurs doivent veiller à ce que la suspension soit aussi brève que possible.

1. Mesurer une longueur de câble équivalant à quatre fois la longueur des deux bras (environ 6 m ou 20 pi) pour laisser suffisamment de câble pour la manœuvre, puis former un nœud coulant ordinaire qui constituera la première boucle destinée à l'une des jambes de la victime.

2. Placer la boucle autour de la cuisse droite de la victime, et bien la remonter jusqu'à la fourche. La main gauche du sauveteur doit tenir l'œil du nœud coulant au centre du corps de la victime, juste au-dessous de la poitrine.
3. Former une deuxième boucle autour de la cuisse gauche de la victime, en prenant soin de bien la remonter jusqu'à la fourche, et former une troisième boucle. Passer la troisième boucle dans l'œil du nœud tenu en place par la main gauche du sauveteur.

4. Placer la troisième boucle sous le bras gauche de la victime et sur son épaule droite, et repasser le câble dans l'œil du nœud. Veiller à ce que le câble passe bien dans l'œil tel que montré.

5. Poursuivre en faisant passer le câble du côté gauche du cou de la victime, puis le long de son dos et jusque sous son bras droit; repasser le câble dans l'œil du nœud, placé près de la poitrine de la victime, ce qui formera la quatrième boucle.

Remarque : Le câble formera maintenant un X dans le dos de la victime.
6. Resserrer fermement l'œil sur les quatre boucles en tirant sur le câble porteur qui permet de le refermer. Ajuster le harnais pour assurer qu'il est suffisamment serré et confortable. Bien fixer l'œil sur les boucles en formant deux demi-clés, ce qui empêchera le nœud de glisser et de se resserrer sur le corps de la victime.

7. Resserrer les demi-clés pour terminer le harnais. Il est possible de nouer un nœud de sécurité sur la ligne du câble soutenant le harnais, ou de fixer la ligne à une ligne de câble distincte.

Si possible, placer quelques éléments en rembourrage entre le câble et le corps de la victime là où il y a des points de pression.
Harnais de sangle (en position debout)
Fait d'une sangle, ce harnais est destiné à une personne capable de se tenir debout et qui a besoin d'un harnais de sécurité complet facile et rapide à exécuter. Il doit être utilisé uniquement pour de courtes périodes, tout particulièrement en mode de suspension. Il existe plusieurs variations de ce harnais, notamment un harnais prêt à utiliser de fabrication commerciale.

D'abord, confectionner la section du siège et ensuite, celle de la poitrine. Terminer en reliant les deux ensemble. Éviter de placer le nœud à un endroit où il sera la cause d'un point de pression sur le corps du porteur.

Siège du harnais

1. Utiliser une sangle de 4,6 m (15 pi), dont les extrémités sont jointes en un nœud de sangle. Si le harnais se révèle trop grand, la taille peut être ajustée au niveau du nœud de sangle en allongeant les queues.

2. Tenir la sangle à la hauteur de la taille, en laissant pendre le reste vers l'arrière et entre les jambes du porteur. Tirer la boucle pendante entre les jambes vers l'avant, jusqu'aux deux autres boucles formées à la hauteur de la taille.

VERSION A : 3. Relier toutes les boucles ensemble à l'aide d'un mousqueton.
VERSION B (convient mieux aux personnes de petite taille) : 3. Tirer vers l'avant la boucle qui pend à l'arrière des jambes; la séparer en deux et passer chacune des parties sous l'une des boucles créées à la taille. Tirer ces deux nouvelles boucles vers l'extérieur pour ajuster la taille du harnais et les ramener ensemble à l'avant de la victime, avant de les fixer à l'aide d'un mousqueton.

4. Demander au porteur de tenir le mousqueton afin de pouvoir vérifier l'ajustement, puis passer à la section de la poitrine. Dans certains cas, il est plus facile de confectionner d'abord la section de la poitrine, et de laisser le mousqueton pendre. Lorsque la section du siège est prête, il suffit ensuite d'attacher les deux sections ensemble pour former le harnais de sécurité.
Section de la poitrine du harnais

1. Utiliser une sangle de 3,7 m (12 pi) dont les extrémités sont jointes en un nœud de sangle. Si le harnais se révèle trop grand, il peut être ajusté au niveau du nœud de sangle en allongeant les queues. Éviter de placer le nœud d'une manière telle qu'il sera la cause de points de pression sur le corps du porteur.

2. Tourner et tenir la sangle de manière à ce qu'elle se croise au centre pour former deux boucles, soit une pour chaque bras. Vérifier que la sangle se croise au centre du dos de la personne. Des modifications peuvent être nécessaires si la sangle menace d'aggraver des blessures physiques.

3. Tirer les deux boucles des bras vers l'avant du porteur pour serrer l'ajustement et modifier la longueur de la sangle si nécessaire.
Fixer ensemble les sections de la poitrine et du siège du harnais à l'aide d'un mousqueton pour former le harnais de sécurité complet. Procéder aux vérifications suivantes :

- Demander au porteur de se pencher légèrement vers l'arrière tout en tenant le mousqueton. Le poids devrait être porté sur le siège du harnais, et l'ensemble devrait être confortable.
- Le harnais devrait être suffisamment ajusté afin de ne pas glisser pendant le mouvement.
- Noyer des nœuds de sécurité sur chaque queue de nœud de sangle qui pend et qui pourrait entraver le câblage.
- La charge ne doit pas être portée sur le côté du mousqueton et le doigt de verrouillage doit être vérifié avant et après avoir fixé les systèmes de câblage.

4. Si la distance qui sépare les points de connexion des deux sections du harnais empêche d'utiliser un seul mousqueton pour les attacher ensemble, les méthodes suivantes peuvent être utilisées pourvu que les deux sections du harnais soient fixées ensemble de manière sécuritaire :

- Ajouter un autre mousqueton; en fixer un sur la section du siège et l'autre sur la section de la poitrine. Pour terminer, fixer directement les deux mousquetons l'un à l'autre.
- Ajouter un autre mousqueton. Utiliser une courte sangle ou une corde Prusik qui servira de lien entre le mousqueton de la section du siège et celui de la section de la poitrine.
Harnais de sangle

Ce harnais est utilisé pour les victimes inconscientes ou allongées qui doivent être secourues rapidement.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Utiliser une sangle de 7,3 m (24 pi) dont les extrémités sont jointes en un nœud de sangle afin de former un grand cercle, qui permettra d'encercler la victime.</td>
<td>2. Soulever les jambes et tirer la sangle jusqu'à la hauteur des cuisses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **3.** Faire passer les sections de la sangle reposant de chaque côté de la victime dans la boucle passant entre ses jambes.
Option :
Tirer sur les deux nouvelles boucles ainsi formées pour ajuster la sangle autour de la victime, ou les fixer ensemble à l'aide d'un mousqueton. Les sauveteurs peuvent maintenant traîner ou tirer la victime comme si elle se trouvait sur un traîneau. | **4.** Prendre la section de la sangle qui repose sur la poitrine de la victime. Tirer et enfiler cette section derrière le cou de la victime. |
| | |
5. Tirer sur les boucles latérales pour ajuster le harnais sur le porteur. Les sauveteurs peuvent maintenant traîner ou tirer la victime pour l'amener dans un endroit plus sécuritaire.

6. Si la sangle a bien été placée derrière le cou, les sauveteurs peuvent également soulever la victime au-dessus du sol et des obstacles en portant les sangles sur leurs propres épaules. Ils peuvent ainsi se déplacer ensemble vers un endroit plus sécuritaire en adoptant une position presque complètement relevée.

Lorsqu'il est question de harnais rapidement confectionné, c'est ce harnais de sangle et sa section placée derrière la tête qui se révèlent les moins inconfortables.
Envelopper une victime reposant sur une civière dans une couverture

Bien qu'il existe de nombreuses façons d'envelopper dans une couverture une victime reposant sur une civière, les objectifs visés sont toujours les mêmes :

- Offrir à la victime de la chaleur lorsqu'elle se trouve en état de choc ou dans des conditions environnementales rudes.
- Réconforter la victime en veillant à ce que rien ne vienne causer de points de pression sur son corps.
- Permettre à un sauveteur d'accéder rapidement aux blessures de la victime et aux zones de son corps facilitant la prise des signes vitaux.
- Empêcher que les couvertures ne se relâchent et se coince dans les systèmes de câblage.

1. Déposer les couvertures comme montré. Veiller à ce qu'il n'y ait aucune bosse qui puisse être la cause de points de pression.

2. Déposer la victime sur les couvertures, en laissant un espace d'au moins 10 cm (4 po) entre sa tête et la traverse de la civière, si possible.

3. Envelopper les jambes avec la couverture. La laisser plus lâche au niveau des pieds s'il est prévu que des liens soient utilisés.

4. Terminer en recouvrant la victime à l'aide de la couverture du haut, qui doit ensuite être ramenée sous son corps.
Liens pour brancard-corbeille

L'ajout de liens à un brancard-corbeille permet d'assurer que la victime :

- est suffisamment maintenue en place pour réduire les risques d'aggravation de ses blessures pendant le transport;
- ne glisse pas dans ou hors de la civière pendant qu'elle est transportée sur un sol inégal;
- est bien maintenue en place lorsqu'elle est transportée d'un point à un autre de hauteur différente;
- ne glisse pas dans la civière lorsqu'elle doit être basculée complètement en position verticale;
- est attaché à la civière de manière sécuritaire lorsque le sauveteur ne peut accompagner la victime pendant toute la durée de l'intervention de sauvetage.

Il existe plusieurs méthodes pour attacher les victimes, notamment en raison des divers styles et designs de brancards-corbeilles de sauvetage. Une méthode peut être tout à fait appropriée pour une civière et ne pas convenir du tout à une autre. Par conséquent, la méthode pour mettre en place les liens peut devoir être modifiée selon les facteurs suivants :

- la largeur et la longueur de la corbeille;
- l'emplacement et le nombre de traverses de support et de traverses de cadre;
- les versions en plastique qui exigent une procédure n'appliquant aucune pression directe sur les sections en plastique, ce qui pourrait en provoquer la rupture;
- la taille et la constitution de la victime;
- la position de la victime dans la corbeille, p. ex. si elle est couchée sur le côté (position latérale);
- le type et l'emplacement des blessures, et l'accès aux parties du corps de la victime;
- la rapidité avec laquelle la victime doit être déplacée pour des raisons de sécurité (danger);
- la longueur insuffisante ou excessive de la sangle ou du câble qui servira à attacher la victime.

Des trousse s d'amarrage commerciales sont offertes sur le marché, allant des trousse s de matériel semblable à des ceintures de sécurité aux trousse s de sangles, destinées spécifiquement à certaines civières.

L'ajout de couvertures est essentiel pour protéger la victime contre les blessures causées par les points de contact entre les liens et le corps. En outre, la présence d'une matelas sure sous la victime est également essentielle lorsque la durée prévue du déplacement est longue. Des couvertures roulées peuvent servir à combler l'espace entre les pieds, la tête et les flancs de la victime et les côtés de la civière, réduisant ainsi le mouvement de la personne. L'utilisation d'une matelas sure peut atténuer le glissement, procurer du confort à la victime et protéger ses blessures. Les bras de la victime doivent être placés contre ses flancs et sous la couverture, si possible, afin de faciliter la procédure d'attache.

Les articles tels que les appareils d’oxygénothérapie doivent être fixés dans la corbeille s'il y a des risques qu'ils en tombent.

De plus, il convient de protéger le visage de la victime afin qu'il ne soit pas fouetté par le matériel d'attache.

Les liens doivent être suffisamment serrés pour fournir la tension nécessaire, mais pas au point d'être inconfortables pour le patient. S'il est conscient, il convient de lui demander de signaler tout inconfort lorsque les liens sont mis en place.
Liens en chevrons
Les liens en chevrons peuvent être réalisés à l’aide d’une sangle ou d’un câble (le câble doit avoir un large diamètre, p. ex. 11 mm, afin d’éviter tout inconfort pour la victime). La longueur courante d’une sangle ou d’un câble destiné à attacher un patient à une civière est d’au moins 18 m (60 pi). S’ils sont noués correctement, les liens en chevrons peuvent être détachés aisément une fois les derniers nœuds de sécurité défaits, ce qui est particulièrement utile si la victime doit être retirée rapidement de la corbeille afin d’être transférée à une civière d’ambulance.

1. Enfiler la moitié d’une sangle ou d’un câble (dont la longueur est prévue à cette fin) sous la traverse de cadre inférieure de la civière. Répéter avec l’autre extrémité de la sangle ou du câble; chaque moitié reposera donc de son propre côté de la civière.

2. Si un câble est utilisé, en remonter le centre sur le dessus de la civière (1ère boucle), en l’enroulant autour des pieds à l’aide d’un nœud de cabestan. Enfiler ensuite la boucle entre les pieds, par-dessus le nœud de cabestan. Cela peut également être accompli en entourant les pieds de la victime, en réalisant un nœud de cabestan et en relâchant un peu de mou pour former la première boucle, qui peut alors être passée au-dessus des pieds jusqu’au-dessous de la plante, et enfilée ensuite entre les deux. Il suffit de tordre la boucle si elle est trop longue.

3. Si une sangle est utilisée, former une boucle ouverte de chaque côté de la civière. Ramener l’une des boucles ouvertes sur la civière en la faisant passer dans la première boucle, soit celle placée près des pieds. Faire de même avec la seconde boucle ouverte, en la faisant passer dans la deuxième boucle fermée formée. Cela permettra de créer une troisième boucle fermée. Prendre soin de préserver la tension de la sangle à mesure que les liens sont noués. Si la civière est dotée de traverses doubles, mieux vaut faire passer la sangle ou le câble sous la traverse inférieure, ce qui permet de fixer les liens plus bas et assure un meilleur ajustement.
4. Poursuivre le long de la civière en répétant l'étape 3 et en formant des boucles après chaque traverse de cadre. Prendre soin de conserver la tension à mesure que les liens sont noués. Éviter de placer l'extrémité des boucles sur les genoux, l'aïne, le diaphragme (juste sous les côtes) et toute blessure. La dernière boucle formée doit être suffisamment éloignée de la gorge.

5. Une fois la dernière traverse de cadre atteinte, tirer sur chaque bout libre pour serrer les liens au-dessus des épaules de la victime en veillant à ce qu'elles soient correctement protégées par du rembourrage. Fixer les extrémités de la sangle ou du câble sur le cadre de la civière à l'aide de nœuds de cabestan.
6. Vérifier le serrage des liens en commençant aux pieds de la victime. Tourner le dernier nœud de cabestan vers la traverse du cadre près des épaules de la victime ou envelopper complètement le nœud en enroulant l'extrémité de la sangle des deux côtés. Placer les restes de câble ou de sangle sous le chargement pour éviter qu'ils ne tombent de la civière et entravent les systèmes de câblage. En bas à droite : Liens formés à l'aide d'une sangle.

Pour desserrer les liens en chevrons du brancard-corbeille pour en libérer le patient :

1. Détacher la dernière partie des liens.
2. Défaire toutes les boucles en tirant de chaque côté.
3. Détacher les pieds.

Exemple de sangle fixée à une traverse de cadre par un nœud de cabestan.
Amarrage en diamant
Cette méthode fait appel à une sangle pour attacher une victime à une civière. Elle exige plus de temps pour libérer la victime de la civière que la méthode en chevrons.

1. Commencer avec une sangle d'une longueur de 18 m (60 pi) (d'un diamètre minimum de 25 mm). Plier la sangle en deux et l'enrouler autour du centre du barreau supérieur au pied de la civière.

2. À partir du bas de la civière, avec la partie droite de la sangle, passer autour du pied gauche de la victime (vers l'extérieur) et poursuivre le long du haut des deux pieds jusqu'au pied opposé (pied droit), puis autour de ce pied en remontant pour terminer entre les deux. Cette queue continuera ensuite vers le côté droit de la civière, lorsque l'on regarde à partir du pied.
3. À partir du bas de la civière, avec l'autre partie de la sangle, passer autour du pied droit de la victime (vers l'extérieur) et poursuivre le long du haut des deux pieds jusqu'au pied opposé (pied gauche). Continuer autour de ce pied en remontant pour terminer entre les deux. Cette queue continuera ensuite vers le côté gauche de la civière, lorsque l'on regarde à partir du pied.

4. Les deux queues continueront vers les côtés opposés jusqu'à la première barre transversale de la civière.
5. Continuer à croiser la sangle le long du patient en orientant les queues vers la prochaine barre transversale opposée de la civière afin de former des diamants. Toujours passer la sangle sous le barreau inférieur.

6. Le dernier croisement de sangle devrait se trouver sur la poitrine, les queues passant par-dessus les épaules de la victime pour les retenir vers le bas.
7. Continuer avec l'une des queues jusqu'à la tête de la civière, et nouer un nœud de cabestan sur le barreau supérieur, en prenant soin d'inclure la barre transversale.

8. Répéter avec le côté opposé.

10. Une fois tout l'amarrage noué, la victime devrait être solidement attachée à la civière sans relâchement excessif de la sangle, sans non plus être étouffée par le dernier croisement placé sur sa poitrine. Pour vérifier l'amarrage, soulever la tête de la civière jusqu'à la verticale; la victime ne devrait pas glisser vers le bas dans la sangle.
Liens pour la civière de modèle Furley

Cette méthode permet d’attacher solidement une victime à une civière de modèle Furley.

Exemples de brides pour civières

| Attache de civière standard réalisée avec une sangle | Attache très efficace avec les corbeilles en plastique. Les queues de la sangle peuvent être utilisées pour attacher une pièce de support interne comme une planche dorsale. | Exemple d’une bride fabriquée commercialement. |

Attaches de civière offertes sur le marché.
ANCRAGES

Les interventions de sauvetage sont souvent synonymes de grandes forces. C'est pourquoi des ancrages solides et inébranlables malgré les charges qui leur sont appliquées (ancrage à toute épreuve) sont essentiels pour relier les systèmes. Puisqu'il est souvent difficile d'évaluer la résistance d'un ancrage, les sauveteurs doivent prendre soin d'inclure deux ancrages ou plus dans chaque système, lorsque possible.

Force de levier appliquée sur un ancrage : Pour réduire la force de levier appliquée sur un ancrage vertical, l'ancrage doit être fixé le plus près possible du sol. La minimisation des effets de la force de levier maximisera la résistance de l'ancrage.

Angle critique : Parfois, les ancrages ne sont pas en ligne directe avec le lieu du sauvetage. Dans ce cas, il peut être nécessaire de mettre en place un ancrage en patte d'oie fixé en deux points d'ancrage. Les angles permettront d'appliquer des vecteurs forces sur les ancrages choisis. Il est essentiel pour les sauveteurs minières de comprendre ces forces.

Fig. 11-1 : Différents angles et leur vecteur force respectif.
Les membres de l'équipe doivent vérifier chaque ancrage avant d'y fixer une sangle ou un câble afin d'en évaluer :

- l'emplacement;
- la résistance;
- la direction dans laquelle la charge se déplacera;
- la stabilité;
- les angles vifs;
- les surfaces abrasives;
- les contaminants;
- les surfaces chaudes;
- s'il convient d'utiliser des points d'ancrage hauts ou bas;
- s'il y a suffisamment d'espace pour agir en toute sécurité.

Ancrages naturels

Les arbres sont les ancrages les plus couramment utilisés par les sauveteurs, mais même les plus gros d'entre eux peuvent ne pas convenir. Lorsque vient le temps de choisir un arbre qui servira d'ancrage :

- Choisir de gros arbres vifs et sains.
- Veiller à ce que l'arbre choisi soit bien enraciné et ne tangue pas.
- Choisir un arbre dont le diamètre est supérieur à 25 cm (10 po), si possible.
- Vérifier le bas de l'arbre, là où la sangle ou le câble sera attaché, afin de trouver tout élément qui pourrait endommager le matériel d'ancrage.
- Vérifier que les racines ne sont pas endommagées et que le sol est intact.

Les éperons et blocs rocheux peuvent constituer des ancrages très résistants. Au moment de choisir un bloc ou éperon rocheux :

- Vérifier qu'ils sont suffisamment gros et stables pour supporter le poids de charge du système de câble.
- Vérifier qu'ils ne sont pas fissurés et que leur forme retiendra le câble ou la sangle en place, sans qu'il ou elle glisse d'un point à un autre.
- Éviter les angles vifs, si possible. Dans le cas contraire, ajouter une matelassure sur les angles pour protéger le système de câble.
- Trouver un sol stable et de niveau qui n'est pas incliné vers une arête.
- Éviter les blocs rocheux assis sur un lit de roches plus petites, puisqu'une légère force serait suffisante pour les faire bouger.

Ancrages structurels

Des structures artificielles peuvent également être utilisées en guise d'ancrages. Voici quelques exemples de bons ancrages structurels :

- Colonnes de béton armé
- Poutres en I en acier de plus de 15 cm (6 po) de large.
- Points d'ancrage artificiels comme les dispositifs de protection contre les chutes des nettoyeurs de vitres.
- De grands ouvrages de maçonnerie en briques.
Voici quelques exemples de mauvais ancrages structurels :

- Gros tuyaux suspendus conçus pour supporter principalement leur propre poids.
- Cheminées faites de briques et de mortier qui ne comprennent pas de béton armé intégré verticalement.
- Surfaces comptant des angles vifs qui peuvent endommager le matériel d'attache;
- Des structures ou des machines susceptibles de bouger sous le poids de la charge.
- Des rambardes, canalisations, façades (face d'un bâtiment) ou articles de décoration peu solides.
- Des points d'ancrage rouillés qui bougent.

Ancrages sur véhicule
Des véhicules peuvent être utilisés s'il n'y a aucun ancrage naturel ou structurel convenable à proximité. Lors de la sélection d'un véhicule :

- Choisir le plus gros et le plus lourd véhicule possible.
- Gager le véhicule de façon perpendiculaire (à 90 degrés) à la direction de la charge, si possible.
- Utiliser un véhicule de sauvetage muni d'un point d'ancrage conçu à cet effet. Vérifier que les roues sont calées et que les feux d'urgence sont allumés.
- Gager le véhicule sur une surface ferme. Éviter au mieux les sols mouillés ou glaçés et le gravier meuble.
- Ne pas utiliser les pare-chocs des véhicules, puisqu'ils peuvent être faibles ou posséder des angles vifs.
- Ne pas utiliser de crochet à bout ouvert ou de dispositif d'attelage de remorque. Utiliser plutôt le châssis du véhicule.
- Retirer les clés et mettre le frein de stationnement.
- Placer une grille de protection, une affiche ou une barricade autour du véhicule.

Ancrages souterrains
La mise en place d'ancrages souterrains dépendra de nombreux facteurs, notamment la méthode d'exploitation minière utilisée, le type de soutènement du sol, la capacité du sol dans le secteur visé et l'accès à des perforatrices.

- Lors de nombreuses interventions de sauvetage, la manière la plus rapide de mettre un ancrage en place et d’utiliser une pièce d’équipement mobile. **Consulter la section sur les points d'ancrage sur véhicule pour plus de détails.**
- Dans les mines où il y a présence de barres d’armature filetées en résine ou de boulons d'ancrage Dywidag, un écrou un D peut constituer un ancrage efficace. Il suffit de le fixer à l’extrémité des boulons pour créer très facilement plusieurs points d'ancrage très utiles lors des interventions de sauvetage.
- Des pitons pour le sol peuvent être utilisés sur les chantiers de production où des trous de production sont pré-percés dans le sol. Les pitons peuvent être fabriqués sur place selon un plan de conception qui convient aux exigences de charge relevées. Il suffit d'enfoncer le piton de sol dans un trou pré-percé et de procéder aux raccordements directement sur le piton.
- Lorsque l'utilisation de perforatrices est possible, des trous peuvent être percés pour insérer des pitons d'acier laminé à froid, en vue de créer des ancrages. Ce type d'ancrage exige un pré-aplanissement de la surface puisqu'il est nécessaire d'établir l'angle correct du trou à percer. En outre, il est extrêmement important d'évaluer la capacité de la roche. La mise en place de ce
type d'ancre peut donc prendre énormément de temps dans une situation d'intervention de sauvetage.

- Les mines dans lesquelles sont utilisés des dispositifs Split-Set (boulons de friction) dans le cadre des plans de soutien du sol peuvent faire appel à des ancrages fabriqués commercialement. La plupart de ces ancrages sont conçus pour servir de points d'ancrage pour la protection contre les chutes, et sont classés comme pouvant supporter 22 kN (5 000 lbf).

- Dans les milieux souterrains, on rencontre souvent, lors de la mise en place des points d'ancrage, des contraintes liées à l’espace limité. Pour tous les ancrages souterrains, il est primordial d’établir l’intégrité et la structure du sol dans lequel les ancrages seront installés.

Ancrages hivernaux
Les ancrages hivernaux sont utilisés dans les endroits où l’on retrouve beaucoup de neige et de glace. L'utilisation de ces ancrages, qui sont propres à chaque site, nécessite une formation supplémentaire qui n’entre pas dans le cadre du présent manuel.

Attaches d’ancrage
Il existe diverses méthodes pour créer des points d'attache d'ancrage raccordés à des systèmes de câblage. Pour ce faire, il faut enrouler une sangle ou un câble, ou utiliser un équipement fabriqué commercialement, comme une élingue métallique de charge nominale donnée ou des courroies d'ancrage. Lorsque deux systèmes de câble ou plus sont utilisés, chacun d’eux doit être fixé à un point d’attache indépendant à moins qu’un joint torique ou plusieurs plaques ne soient utilisés. Ces dispositifs peuvent en effet accueillir plusieurs attaches.

Parfois, il est possible qu’un seul ancrage à toute épreuve puisse être utilisé. Le cas échéant, des points d'attache séparés doivent être mis en place. (Exemple : Deux enroulements de sangle indépendants avec leurs propres points de connexion distincts. Une autre méthode consiste à utiliser une plaque à points d’ancrage multiplescervie). Les points d'attache d'ancrage peuvent être prolongés à partir de l’ancrage à toute épreuve jusqu’à un endroit qui convient au câblage. L’exemple parfait d’un tel montage est l’ajout d’une rallonge et l’amélioration de l'accessibilité du point d’attache d'ancrage pour les sauveurs qui œuvrent près du rebord d’une zone se chute. Les sauveurs peuvent ainsi relier leur harnais au point d’ancrage rallongé en guise de protection contre les chutes ou de dispositif de retenue en cas de chute.

Attaches d'ancrage faites de câble
Nœud de huit et une boucle avec nœud en huit sur le double : Exige un câble de 0,9 m (3 pi), plus la longueur nécessaire pour l'enrouler autour de l'ancrage. La boucle avec nœud en huit sur le double forme l'anse d'utilisation.

Nœud autobloquant : À utiliser avec les ancrages de forme cylindrique. Le câble doit être enroulé trois fois ou plus. L'ancrage doit faire au moins dix fois le diamètre du câble. Utiliser une boucle avec nœud en huit sur le double et un mousqueton ou un nœud de huit pour attacher l'extrémité libre du câble.
Élingue simple (simple boucle)
Enrouler une seule sangle autour d'un ancrage et lier les extrémités ensemble à l'aide d'un nœud de sangle. Le nœud de sangle sera extrêmement difficile à défaire une fois la charge en place. Lorsque l'angle interne formé par les côtés de l'élingue est de moins de 90°, le système peut supporter des forces allant jusqu'à 22 kN, ce qui convient uniquement à la charge d'une personne seule.

Élingue bâche
Assure que l'angle interne formé par les côtés de l'élingue demeure de moins de 45°. Tout angle supérieur pourrait faire en sorte que le port de la charge soit porté sur le côté du mousqueton. Il n'est pas recommandé d'utiliser une élingue de ce type lorsque la direction de traction change puisqu'alors, les côtés de l'élingue ne porteront pas une charge équivalente. Cela entraînera une réduction importante de la résistance. Ce dispositif convient à une charge de deux personnes ou à une charge de sauvetage.

Ancrage à nœud de sangle
L'ancrage à nœud de sangle est une attache d'ancrage qui peut être réalisée à l'aide d'une sangle. La résistance perdue est minime lorsque l'ancrage est attaché correctement, les extrémités nouées de la sangle faisant face à la charge et étant opposées à l'ancrage.

Avantages
- Permet aux mousquetons de glisser de manière égale pour éviter le transfert de la charge sur le côté.
- Une fois tendu, la prise de l'ancrage sur l'arbre augmente pour permettre la mise en place sécuritaire de poulies directionnelles en point élevé.

Méthode de nouage
1. Enrouler trois fois la sangle autour du point d'ancrage.
2. Attacher la longue extrémité avec un nœud simple et remonter avec l'extrémité courte pour créer un nœud de pêcheur.
3. Placer le côté de la charge à l'opposé du point d'ancrage.
4. Tirer les deux boucles ouvertes vers l'avant et fixer le mousqueton.

Systèmes d'ancrage par pieux
Un système de pieux est une solution à envisager lorsqu'il n'y a aucun ancrage disponible dans un secteur sauvage. Néanmoins, les systèmes de pieux exigent une longue préparation avant de pouvoir être utilisés à des fins de sauvetage.

Mise en place d'un système de pieux
1. Les pieux doivent être d'un diamètre de 2,5 cm (1 po) et d'une longueur de 1,2 à 1,5 m (4 à 5 pi), de manière à ce que le 2/3 de leur longueur puisse être enfouie dans le sol.
2. Enfoncer les pieux selon un angle de 15° avec le sol, à l'opposé de la force qui sera appliquée sur l'ancrage.
3. Lier ensemble les pieux de chaque rangée en amarrant d'abord le haut du premier pieu (celui qui se trouve le plus près de la charge avec un nœud de cabestan) avec le bas du
second trois à quatre fois. Fixer le tout à la base. Poursuivre de cette façon jusqu'à ce que toutes les rangées de pieux aient été liées. Utiliser pour ce faire un câble de 12,7 mm (½ po) de diamètre ou une sangle d'environ 15 m (50 pi) de long.

4. Tendre les amarres en les tordant de quatre à six tours avec un bâton. Planter ce bâton dans le sol pour le fixer en place.

5. Attacher la ligne principale en la fixant au pieu avant chaque rangée.

Plusieurs points d'ancrage peuvent être nécessaires pour mettre en place un ancrage à toute épreuve. Toujours garder en tête le facteur de sécurité 10:1.
GAINS MÉCANIQUES

Les gains mécaniques s'acquièrent par l'utilisation de poulies et de câbles. Ils sont utilisés dans le cadre d'intervention de sauvetage lorsqu'une charge doit être soulevée. Les systèmes de poulie à gain mécanique contribuent à soulever les charges en réduisant le degré de force nécessaire. Par exemple, un système avec un gain mécanique de 5:1 n'exige qu'un cinquième de la force nécessaire dans un système 1:1. Toutefois, ce gain mécanique nécessitera un câble à tirer d'une longueur cinq fois supérieure à celle du câble d'un système standard (le fait de tirer un câble de 5 m au sein d'un système de poulie 5:1 fera bouger la charge d'un mètre).

Un système simple fait appel à un câble fixé directement à la charge ou à l'ancrage, alors que son autre extrémité constitue l'endroit où appliquer la force pour faire bouger la charge.

- Lorsque le câble est fixé à la charge, le gain mécanique est toujours désigné par un nombre impair. Il s'agit plutôt d'un nombre pair lorsque le câble est fixé à l'ancrage.
- Une manière facile d'établir le gain mécanique d'un système de poulie simple consiste à compter le nombre de câbles utilisés dans le système. Remarque : Si le dernier câble est tiré en direction opposée au déplacement de la charge, on estime qu'il s'agit là d'un changement de direction et cela ne doit pas être pris en compte dans le calcul du gain mécanique total.
- Il convient de veiller à ce que les poulies soient bien alignées et d'éviter qu'un croisement de câble au sein du système provoque de la friction ou une torsion. Les systèmes simples dont le gain mécanique est de plus de 5:1 sont plus sensibles à ces problèmes et doivent être évités, si possible. Advenant que système de ce type soit nécessaire, il faut envisager d'utiliser un système composé.
Cordes Prusik

Le point de prise Prusik (ou prise Prusik) désigne le nœud Prusik qui ajoute un gain mécanique à un autre dans un système composé, et qui permet à l’un de tirer l’autre. Placé dans un système en Z, il permet d’optimiser un gain mécanique en tirant sur lui-même (sur le même câble). C’est aussi la composante du système qui peut être glissée pour remettre le système en état lorsque les poulies se coincent (sont trop près les unes des autres). Seule une corde Prusik de 8 ou 9 mm est utilisée pour cette opération. Un nœud de Prusik qui glisse est un bon indicateur que des forces excessives sont appliquées sur le système. Certains dispositifs mécaniques de prise peuvent endommager le câble; si un tel dispositif est utilisé, les directives du fabricant doivent être respectées.

Un frein à cliquet Prusik est placé dans un système de halage pour tenir une charge en place de façon sécuritaire (frein de stationnement) pendant la remise en place des composantes de gain mécanique dans les systèmes composés et en Z. Il sert également de mécanisme de sécurité sur le câble porteur. Pour les lourdes charges (une personne de 136 kg [300 lb] et plus), des cordes Prusik en tandem doivent être utilisées. L’ajout d’une poulie pare-prusik permet aux cordes Prusik fixées au câble porteur de fonctionner comme un dispositif d’assurage à cordes Prusik en tandem lors du soulèvement d’une charge. Il existe des mécanismes commerciaux qui offrent les mêmes fonctions que ce type de câblage.
Dans un système composé, un deuxième système de poulies (ou plus) est ajouté au premier (un système à gain mécanique qui tire sur un système à gain mécanique).

- Pour établir le gain mécanique total d’un système composé, il suffit de faire la multiplication des gains mécaniques des systèmes. P. ex. si l’un des systèmes est de 3:1 et l’autre de 2:1, le gain mécanique total est de 6:1 (3 x 2).

- Lors de la remise en place d’un système de poulies composé dans lequel les deux systèmes ont un gain mécanique différent, fixer le système dont le gain mécanique est le plus bas à la charge, et tirer le tout avec le système doté du gain mécanique le plus élevé. Dans certaines circonstances, cette règle pratique ne fonctionnera pas pour la tâche à accomplir.

- Idéalement, un ancrage séparé doit être utilisé pour chaque gain mécanique, et ces ancrages doivent être éloignés d’un mètre ou plus.
Systèmes à gain mécanique en Z

Les systèmes de câblage en Z sont fréquemment utilisés au sein des systèmes de sauvetage par câble. Un système à gain mécanique en Z est un système à gain mécanique de 3:1 composé d'un seul câble, qui peut facilement être modifié pour obtenir un gain mécanique supérieur. Le système en Z tient son nom de la forme qu'il adopte une fois mis en place.
Systèmes à gain mécanique complexes
Un système à gain mécanique complexe combine deux systèmes à gain mécanique simples de manière à ce que les poulies de circulation soient très près l'une de l'autre. Le principal avantage des systèmes complexes est qu'ils nécessitent moins d'équipement pour obtenir un plus grand gain mécanique.
Changement de direction
Dans un système à gain mécanique, un changement de direction, prend place lorsque la force de tirage appliquée à l’extrémité du câble voyage dans la direction opposée au déplacement de la charge. Exemple : Tirer vers le bas sur un système à gain mécanique alors que la charge se dirige vers le haut.

Pour certaines dispositions de câblage, il peut être nécessaire d’ajouter une poulie de changement de direction sur un ancrage à toute épreuve séparé. (Si la distance entre un changement de direction en hauteur et le sol entraîne une descente d’une hauteur suffisante pour provoquer des blessures, alors le câblage doit être manipulé au niveau du sol.)

Exemple de situations dans lesquelles il est possible de faire appel à un changement de direction :
- Les situations structurelles qui exigent un changement de direction en raison de l’espace limité disponible pour placer le câblage.
- Les situations dans lesquelles le principal point d’ancrage fait en sorte que le câble porteur n’est pas aligné avec la charge.
- Les situations de sauvetage en présence de talus où les distances de hissage et remise en place des systèmes à gain mécanique sont limitées.
- Lors de l’utilisation des poutres de support d’un bâtiment en guise d’ancrages directionnels élevés.
- Dans les situations où du câblage doit être mis en place sur une falaise ou sommet prononcé et qu’un point élevé est nécessaire, par exemple sur une charpente.
Systèmes à gain mécanique élevé

La plupart des interventions de sauvetage peuvent être réalisées avec un système de poulies 6:1. L'utilisation de systèmes 8:1 et 9:1 n'est, en règle générale, pas recommandée en raison de la longueur de câble et de l'espace nécessaires. Ces systèmes font également en sorte qu'il est plus difficile de sentir le mouvement de la charge. Le sauveteur est alors susceptible d'exercer une trop grande force sur le câble, ce qui pourrait endommager le système. La force de travail de sécurité d'un équipement de câblage doit toujours être considérée en termes de force appliquée par ces systèmes à gain mécanique élevé.

Force de tirage du sauveteur

Un sauveteur moyen peut tirer avec une force maximale de 23 kg (55 lb). Avant d'utiliser un système de poulies, il convient de calculer approximativement le degré de force qui sera exercé par les sauveteurs et le système à gain mécanique. Une corde Prusik glissera pour une charge d'environ 500 kg (1 100 lb). Les sauveteurs doivent par conséquent procéder à une vérification du système et évaluer de nouveau le poids de la charge, incluant les forces de tirage, lorsque cela se produit.

ASSURAGE

L'assurage est une technique qui permet d'empêcher une personne ou une charge de tomber. Certaines techniques sont conçues pour les charges légères, comme une personne seule. Pour les charges lourdes, les sauveteurs utilisent un dispositif d'assurage de sécurité.
La technique du demi-cabestan peut être utilisée pour un câble de sécurité individuel sur une pente consolidée faiblement inclinée. L’avantage est une installation rapide, en cas de blessé grave nécessitant des premiers soins de toute urgence.

Le demi-cabestan ne doit pas être utilisé pour les opérations de sauvetage technique, comme les interventions sur des structures en hauteur ou en falaise, pouvant donner lieu à des chutes graves. Ces méthodes d’assurage ne soutiennent pas le test du sifflet : si, en théorie, à n’importe quel moment, un coup de sifflet signale au sauveteur de marquer un arrêt et de retirer ses mains du dispositif, la charge vivante ne subira rien de catastrophique.

Dispositifs d’assurage de sécurité
Le câble principal de sécurité peut lâcher en raison d’une défaillance matérielle, d’une erreur humaine ou des conditions environnementales. Dans le cadre d’une cordée de sauvetage minier, la meilleure pratique consiste à recourir à un second système de câble indépendant qui agira comme dispositif de secours lors de l’ascension ou de la descente de la charge.

Fonctions d’un dispositif d’assurage de sécurité :
- Rattrape la charge maintenue par le câble principal, si celui-ci lâche sans opérateur pour l’engager. Normalement, le dispositif d’assurage de sécurité ne doit jamais être tendu. Sinon, cela indique une défaillance. (Remarque : Dans certaines opérations de sauvetage, on utilise des dispositifs à deux câbles ou chacun agit à la fois comme câble de travail et câble d’assurage. Cette technique, qui nécessite une formation particulière, n’est pas abordée dans le présent manuel.)
- Le dispositif doit pouvoir survivre à l’événement sans être trop endommagé et permettre à la charge de monter ou descendre.
- La force d’arrêt maximale (FAM) ne doit ni blesser le sauveteur, ni provoquer d’accident, ni engendrer une défaillance du dispositif, comme le décrochage d’un point d’ancrage ou la coupure du câble sur une arête.
- La distance d’arrêt doit être assez courte pour éviter à la charge de heurter des obstacles.
- Le dispositif doit être utilisable dans n’importe quel environnement.
- Les sauveteurs doivent pouvoir manœuvrer la charge sous tension, une fois celle-ci engagée avec un nœud de débrayage de charge.

Plusieurs équipements d’assurage sont vendus dans le commerce. Si l’équipement utilisé n’est pas cité dans le présent manuel, veuillez suivre les consignes du fabricant pour éviter tout usage inapproprié du matériel.

Fonctionnement d’un dispositif d’assurage

1. Les nœuds de Prusik doivent être tenus ensemble dans une seule main sans le pouce (c’est la main d’assurage), afin de faciliter le débrayage. Le pouce ne doit pas les entourer.

2. La main d’assurage doit être placée avec le pouce levé et la paume tournée vers
la charge par une torsion du poignet. Cette torsion du poignet permet à l’assureur de contrôler
la quantité de mou dans le câble d’assurage et de conserver un minimum de mou sans que les
nœuds de Prusik ne se bloquent involontairement. Ce mouvement permet également de placer
les nœuds de Prusik à un angle de 90° par rapport au sens du câble d’assurage, une position qui
favorise leur capacité de blocage.

3. La seconde main sera utilisée pour tirer le câble d’assurage à travers les nœuds de Prusik (tenus
dans la main d’assurage).

4. Il faut veiller à ce que les nœuds de Prusik restent bien ajustés sur le câble, tout au long de
l’opération.

5. En cas de défaillance du câble de travail, le tirage du câble d’assurage dégagera les nœuds de
Prusik de la main de l’opérateur, entraînant leur blocage rapide sans que l’assureur n’ait à agir.
Nœud de transfert de charge (système de relâchement)

Le nœud de transfert de charge sert à délester la charge d’un câble comportant des nœuds de Prusik bloqués et à franchir les nœuds du câble principal pendant une descente. Il est également utilisé pour faire descendre un camouflage directionnel pour bordure et permettre ainsi le passage de la charge.

Utilisez deux gros mousquetons en forme de D et un cordage long de 10 m de longueur et de 8 mm. De diamètre

1. Placez les deux mousquetons sur le sol de sorte que les doigts soient dirigés vers la droite, les griffes tournées vers la position de travail, la partie inférieure vers le bas et la partie supérieure vers le haut.
2. Faites un petit nœud en forme de huit double à une extrémité du câble, puis accrochez-le du côté du mousqueton qui va vers la charge.
3. Faites le tour du mousqueton supérieur, (3) repassez dans le mousqueton de travail, puis remontez vers le mousqueton d’ancrage et intégrez un demi-cabestan (4–5) sur ce mousqueton du côté du doigt.

5. Vérifiez que le demi-cabestan est en position de débrayage et que le câble passant se trouve du côté du doigt du mousqueton. Sécurisez par un nœud d’arrêt recouvrant l’ensemble. (9–13)
Nœuds de Prusik en tandem
La technique des nœuds de Prusik en tandem est conçue pour hisser une charge de sauvetage. Elle comporte également un nœud de débrayage de charge. Un seul nœud de Prusik pourrait se défaire sous une charge excessive. Dans cette technique, l’espacement entre les enroulements permet aux deux nœuds de fonctionner sans se gêner.

Composantes d’un nœud de Prusik
- Un nœud de débrayage de charge attaché au point d’ancrage un demi-cabestan du côté de l’ancrage
- Une poulie pare-prusik (PPP) attachée au nœud de débrayage **Remarque** : N’est pas obligatoire pour les descentes, mais très utile pour le sauvetage, comme au moment du hissage du câblage.
- Un nœud de Prusik court d’environ 5 pieds (1,5 m) et un nœud de Prusik long d’environ 6 pieds (1,8 m) attachés au connecteur de débrayage de charge, puis les deux nœuds de Prusik triples enroulés autour du câble d’assurage. Le plus court est placé plus près de l’ancrage avec un espacement mesurant entre deux doigts et une main entre ses enroulements et ceux du plus long. **Remarque** : Ces longueurs sont compatibles avec des PPP de 2 pouces (5 cm) ou de 3 pouces (7,5 cm).
DESCENTE EN RAPPEL

La descente en rappel consiste à descendre le long d’un câble, au moyen d’un système de freinage de la descente contrôlé par le sauveteur. Bien qu’il existe un grand nombre de systèmes pouvant être utilisés à cette fin, la plupart des équipes de sauvetage ont recours à un descendeur « personnel » ou Micro-Rack. Divers autres dispositifs conçus pour cette application sont vendus dans le commerce. Le dispositif de descente est raccordé au baudrier du sauveteur par un mousqueton de sécurité.

Pour les opérations de sauvetage minier en rappel au-delà d’un angle à 30 degrés (raide à extrêmement raide), un câble d’assurage doit être attaché entre un point d’ancrage séparé, résistant aux explosions, et le baudrier du sauveteur en rappel. Le dispositif d’assurage doit comporter des nœuds de Prusik en tandem ou un système d’assurage homologué issu du commerce.

Les sauveteurs doivent avoir été formés à l’utilisation du dispositif et pouvoir s’arrêter au milieu de la descente, de même que maîtriser la procédure de câble de fixation ou le mécanisme de blocage de certains dispositifs. Parmi les erreurs dangereuses, citons le fait d’utiliser le mauvais anneau du câble quand on utilise un des cendeur ou de glisser le câble dans le mauvais sens quand on utilise un dispositif de descente acheté dans le commerce.

Avant une opération en rappel

- Inspectez soigneusement les ancrages, les câbles, les fixations, les systèmes de fermeture des mousquetaux, le baudrier du sauveteur et l’EPI.
- La longueur du câble ne doit pas être inférieure à celle de la descente en rappel.
- Attachez le câble principal à la fixation D à la taille. Le dispositif d’assurage est attaché à la fixation sternale (sur la poitrine) ou dorsale (sur le dos), selon le cas.
- La personne chargée de manœuvrer et de contrôler le câble d’assurage doit être prête à laisser du mou et à remplir ce rôle jusqu’à la fin de la descente en rappel.
- Vérifiez que les sauveteurs qui travaillent à proximité des bords portent un câblage antichute.
- Il faut ajouter une protection contre les arêtes pour empêcher l’endommagement du câble. Faites attention aux matériaux tranchants ou meubles sur les bords, comme des rochers, ainsi qu’aux cornières sur les bâtiments.
- Vérifiez que la surface du versant que le sauveteur va attaquer ne présente pas de dangers comme de la glace, des parties glissantes, un effritement de matériau ou des obstacles cachés.
- Testez la tension de la corde de rappel à la première charge au point de transition (bordure).
- Vérifiez les angles de câble. Si aucun point d’ancrage n’est disponible en hauteur, la personne en rappel devra éventuellement ramper par-dessus le bord pour se positionner plutôt que recourir à la procédure de rappel consistant à se tenir debout, puis à se pencher en arrière.
- Assurez-vous que le point de départ ne donne pas directement sur un danger, une victime ou un autre sauveteur.
- Évitez tout risque d’oscillation en commençant trop loin de la corde directe (câble de sécurité vertical) par rapport au point d’ancrage.
Pendant le rappel
- Une descente effectuée trop rapidement peut causer des problèmes comme une forte chaleur causée par la friction ou une perte de contrôle du sauveteur.
- Ne sautez pas latéralement. Cela risque d’user le câble.
- La position des jambes du sauveteur dépend du type et de la forme du sol. Un bon équilibre et une surface non glissante sont essentiels. En règle générale, le sauveteur doit essayer d’écarter légèrement les pieds, en respectant un espacement de la largeur des épaules.
- Si un autre sauveteur se trouve au sol, il peut prendre le contrôle de la descente en gérant la tension de la corde de rappel depuis le sol.

Arrivée en fin de course
- Pliez légèrement les genoux avant l’arrêt. Une fois au sol, mettez-vous debout.
- Dégagez le dispositif de rappel du câble. Si vous le laissez en place, il y a un risque d’échauffement du dispositif. Or, il se peut qu’un autre sauveteur ait à utiliser ce câble.
- Détachez-vous du câble d’assurage de sécurité.
- Informez le capitaine ou le chef du sauvetage, une fois détaché de chaque câble.
Manuel de sauvetage minier de l’ouest du Canada

Chapitre 12 Opérations souterraines
OBJECTIFS

Les opérations de sauvetage minier en milieu souterrain présentent des difficultés uniques faisant appel à des mesures elles aussi particulières. Au terme de ce chapitre, l’apprenant sera en mesure de démontrer des connaissances et (ou) des compétences concernant :

- les plans d’intervention en cas d’urgence minière (PIUM);
- les principes de ventilation dans les mines souterraines;
- les instruments utilisés pour mesurer la ventilation dans les mines;
- les plans et les coupes de mine;
- les techniques de lutte contre les incendies en milieu souterrain.

UN GUIDE POUR PLANIFIER LES PROCÉDURES D’URGENCE DANS LES MINES

Sécurité

Le premier objectif de toute opération de sauvetage minier est d’assurer la sécurité de l’équipe de secours. Dans une telle opération, la reconnaissance et la maîtrise des risques jouent un rôle central. Compte tenu de la nature même des opérations souterraines, des mesures comme la neutralisation d’un incendie et la ventilation peuvent s’avérer prioritaires pour pouvoir mettre en œuvre les principes du sauvetage minier.

Toutes les mines doivent posséder un plan d’intervention en cas d’urgence minière. Les équipes de sauvetage minier doivent en connaître le contenu et respecter l’intégralité des procédures d’urgence sur place. Le présent chapitre est un guide sur les éléments d’un plan d’intervention d’urgence.

Déclenchement du dispositif d’intervention d’urgence :

- Signalement initial d’une situation d’urgence : Une situation d’urgence est découverte et communiquée au personnel responsable.
- Lancement du plan d’intervention en cas d’urgence minière : Le personnel responsable reçoit le signalement de la situation d’urgence et lance le plan d’intervention en cas d’urgence minière.
- Systèmes de notification : Divers systèmes sont employés pour alerter les travailleurs en cas d’urgence : gaz malodorant, radios/téléphones, appareils d’urgence personnels et autres systèmes d’alarme auditifs ou visuels.

Organigramme de la chaîne de commandement

<table>
<thead>
<tr>
<th>Poste</th>
<th>Responsabilités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directeur de mine</td>
<td>• Toutes les opérations minières et interventions en cas d’incident</td>
</tr>
<tr>
<td></td>
<td>• Veiller à la mise en place d’un PIUM efficace</td>
</tr>
<tr>
<td></td>
<td>• Assurer la liaison avec les autorités juridictionnelles</td>
</tr>
<tr>
<td></td>
<td>• Déléguer des responsabilités</td>
</tr>
<tr>
<td>Surintendant de mine</td>
<td>• Connaissance des opérations minières</td>
</tr>
<tr>
<td></td>
<td>• Mécanisme de responsabilisation (p. ex., pointage à l’entrée et à la sortie)</td>
</tr>
<tr>
<td></td>
<td>• Assurer la liaison entre le directeur de la mine</td>
</tr>
</tbody>
</table>
et l’équipe d’intervention
- Contrôle l’accès à la mine

<table>
<thead>
<tr>
<th>Superintendant d’usine/de la maintenance</th>
<th>Soutien sur place (p. ex., systèmes électriques, systèmes mécaniques, ventilation, eau, etc.)</th>
</tr>
</thead>
</table>
| Ingénieur en chef | Plans et ventilation de la mine
- Conseils techniques |
| Coordonnateur des interventions d’urgence | Transmettre les consignes et les observations entre le centre de commandement et les équipes de sauvetage minier |
| Équipes de sauvetage/spécialistes | Intervenir dans le cadre de leurs fonctions
- Écouter les consignes du coordonnateur des interventions d’urgence et lui rapporter leurs observations
- Entretien du matériel d’intervention |
| Services médicaux | Prendre en charge toutes les victimes ramenées à la surface
- Communiquer directement avec les équipes médicales externes (ambulances, médecins, etc.)
- Communiquer à l’interne avec le centre de commandement |
| Logistique et soutien | Tous les services et toute l’assistance nécessaires lors d’un incident (transport, hébergement, alimentation, coûts, familles, confidentialité et sécurité)
- Toutes les communications externes (médias)
- Obtenir des services d’aide élémentaire (counseling concernant le stress après un incident, etc.)
- Gérer les installations, le matériel et les fournitures |

Voies de sortie et de circulation : Les voies primaires et secondaires doivent être clairement indiquées sur les plans de la mine et affichées aux points stratégiques à l’intérieur de la mine. Ces plans doivent être régulièrement mis à jour et les équipes de sauvetage minier doivent pouvoir y accéder facilement.

Refuge : C’est un lieu dans lequel les travailleurs peuvent s’abriter en présence de gaz toxique, de fumée et d’air à faible teneur en oxygène. L’emplacement et les caractéristiques d’un refuge sont dictés par la réglementation de la juridiction. Un refuge peut être :
- **Mobile** : Un refuge mobile est petit et peut être déplacé aisément à mesure que la production ou la mise en valeur évoluent à la mine.
- **Fixe** : Un refuge fixe peut accueillir un plus grand nombre de personnes, étant plus grand et contenant plus d’air. Au fur et à mesure du développement minier, il peut devenir redondant, mais rester tout de même fonctionnel.
Les travailleurs et les équipes de sauvetage doivent connaître :

- l’emplacement des refuges dans la mine;
- le mode de fonctionnement des refuges;
- la capacité des refuges;
- le matériel et les accessoires s’y trouvant, tels : dispositif d’absorption de dioxyde de carbone, réserve d’oxygène (bouteille ou générateur), système de chauffage ou de climatisation, extincteurs, dispositifs d’éclairage, fournitures de premiers soins, civière, toilettes, scellant, etc.;
- la durée de conservation des fournitures – oxygène/air, eau, nourriture, piles, etc.;
- les procédures de communication.

Règle d’or : Un mètre cube d’air environ constitue une réserve suffisante d’oxygène pour une personne moyenne au repos pendant une heure. Au bout d’une heure, la teneur en oxygène sera de 16 % et la teneur en dioxyde de carbone de 5 %, approximativement.

Caches d’auto-sauveteurs : Ces caches, répartis à des endroits de la mine, abritent des auto-sauveteurs. Ces auto-sauveteurs sont destinés aux travailleurs qui fuient le danger, tout en pouvant servir également aux équipes de sauvetage minier.

Conditions du sol : Pour déterminer et maîtriser des conditions dangereuses au niveau du sol, voici des techniques possibles :
- Écaillage : inspection et élimination du sol meuble
- Soutien temporaire du sol : érection de poutres et autre renfort
- Barricade : blocage de l’accès aux zones sans renfort du sol

Ventilation : Les sauveteurs doivent comprendre le processus normal de ventilation des mines et les conséquences que peuvent avoir un incendie ou une mauvaise ventilation sur ce processus.

Réseaux de distribution d’énergie, d’air comprimé et de distribution d’eau : En cas d’urgence, les sauveteurs peuvent être amenés à manipuler ces systèmes. Ils doivent donc en connaître le fonctionnement et la manière de les isoler.

Procédures d’évacuation d’urgence : Si des travailleurs parviennent à remonter à la surface pendant une situation d’urgence, ils doivent être rayés de la liste des personnes présentes dans la mine, conformément à la procédure de comptage prévue. Ils doivent ensuite se rassembler dans une zone désignée et ne pas en sortir jusqu’à ce qu’un responsable les y autorise.

Groupe de commandement/des opérations d’urgence : Il s’agit du personnel chargé de la direction, de la coordination, de la communication et du soutien en cas d’intervention d’urgence, conformément au plan d’intervention en cas d’urgence minière.

MAÎTRISE DES INCENDIES ET VENTILATION

Les feux de mine souterraine constituent des situations extrêmement dangereuses pouvant causer des pertes humaines ou matérielles catastrophiques sur un chantier. L’extinction d’un feu dans un milieu souterrain exige des compétences particulières et une solide connaissance des principes de base de la ventilation des mines. La vigilance doit être encore plus grande qu’en cas de feu à la surface, afin d’éviter que les sauveteurs ne deviennent eux-mêmes des victimes.
Ventilation des mines souterraines
La ventilation des mines souterraines est la première mesure d’ingénierie utilisée pour assurer un air respirable et limiter l’exposition des travailleurs à des atmosphères dangereuses. Une équipe de sauvetage minier doit absolument comprendre ce processus pour progresser en toute sécurité dans une mine lors d’une situation d’urgence.

Facteurs ayant une incidence sur les mouvements d’air dans une mine

Pression : Les mouvements d’air horizontaux sont provoqués par les différences de pression d’air. L’air se déplace toujours d’une zone haute pression vers une zone basse pression. Plus la différence de pression est importante, plus l’air se déplace rapidement.

Poids relatif : La différence de poids relatif (air = 1) influence également le déplacement de l’air, mais sur le plan vertical.

Température : L’air chaud est plus léger que l’air froid. Il monte. L’air froid est plus lourd que l’air chaud. Il descend.

L’air circule dans une mine de deux façons :
- Ventilation naturelle
- Ventilation mécanique

Ventilation naturelle
Certaines mines, en particulier en terrain montagneux, possèdent une ventilation naturelle causée par les différences entre la pression à l’intérieur et celle à l’extérieur de la mine et les différences entre le poids relatif de l’air chaud et celui de l’air froid. Bien que toute mine utilisant des moteurs diesel soit tenue de recourir à une ventilation mécanique, la connaissance des principes de base de la ventilation naturelle est utile dans le cadre des opérations de sauvetage minier.
Ventilation mécanique
Bien que la ventilation naturelle dans une mine puisse être très efficace, ce n’est pas une source assez fiable. Une ventilation mécanique est nécessaire quand on utilise des moteurs à combustion interne qui nécessitent un certain volume d’air. Pour cela, il faut installer des ventilateurs aux ouvertures ou à l’intérieur de la mine. Ces ventilateurs sont simplement un moyen de changer la pression de l’air à des endroits précis de la mine.

La technique de **ventilation à pression positive** consiste à installer un ventilateur en vue de créer une zone de haute pression. Dans le cadre d’opérations souterraines, le ventilateur est placé à l’entrée du tunnel et tourné vers l’intérieur. L’air haute pression qui se trouve devant le ventilateur se dirigera vers les zones de faible pression situées à distance du ventilateur. Le mouvement de ramassage des pales empêche l’air de revenir vers le ventilateur.

Une **ventilation de poussage et de soufflage** consiste à associer un ventilateur à pression positive avec un ventilateur d’extraction de manière à créer une différence de pression qui aura pour effet d’augmenter le flux d’air.

La **ventilation auxiliaire** sert à acheminer les flux d’air de la voie principale d’aérage jusqu’aux galeries sans issue.

Figure 12.1 : Les ventilateurs soufflants et aspirants assurent une ventilation auxiliaire.
Répartition de l’air

Dans une mine, l’air qui circule emprunte toujours la voie la plus facile, c’est-à-dire celle qui offre le moins de résistance. La résistance à la circulation d’air dépend des facteurs suivants :

- La quantité d’air qui passe
- La rugosité des ouvertures traversées (friction)
- La taille des ouvertures
- La longueur des ouvertures

L’air passera beaucoup plus facilement dans un tunnel de large diamètre aux murs lisses que dans un tunnel de petit diamètre très charpenté. Locomotives, matériel d’exploitation sans rail, convoyeurs, appareils régulateurs de ventilation, etc., sont autant de restrictions dans un tunnel qui contribuent à la résistance de l’ouverture de la mine et rendent le passage de l’air plus difficile.

Division

Quand l’air qui circule dans une mine arrive à un embranchement à deux voies ou plus, l’air se divise entre chaque ouverture. La quantité d’air qui circule dans chaque direction dépend de la résistance réelle à chaque ouverture. L’air ne circulera pas dans les galeries sans issue, n’ayant nulle part où aller.

Les méthodes les plus courantes pour acheminer l’air dans la direction souhaitée sont :

- Cloisons et portes de ventilation
- Régulateurs de ventilation
- Ventilateurs auxiliaires (ventilateurs de renfort)
- Ventilateurs auxiliaires avec conduit de ventilation
- Cloisons d’aérage

Cloisons et portes de ventilation

Des cloisons et portes de ventilation peuvent être utilisées pour empêcher l’air d’aller dans la mauvaise direction et le contraindre à aller dans la bonne direction. Quand le ventilateur principal est installé dans une mine, il doit être séparé de l’entrée principale. Des sas sont utilisés pour atténuer la pression engendrée par les ventilateurs et faciliter l’entrée et la sortie de la mine. Il est important que les portes soient maintenues dans la bonne position, de manière à ne pas interrompre ou changer la ventilation de la mine.

Des cloisons pleines sont utilisées quand aucun accès n’est nécessaire. Sinon, des portes sont prévues dans les cloisons. Cloisons et portes sont utilisées de diverses façons afin d’acheminer l’air à travers les mines. Leur fonction principale consiste à isoler les zones de haute pression des zones de basse pression qui ne nécessitent pas d’air. Une porte partiellement ouverte peut également être employée dans ce but.

Un régulateur est une cloison pleine pourvue d’une ouverture réglable. Il sert à réduire la quantité d’air qui passe à travers les ouvertures en augmentant le degré de résistance. Cela augmente la quantité d’air qui passe à travers les autres voies d’air. Seul le personnel autorisé peut modifier les réglages.

Les portes coupe-feu servent à contrôler les flux d’air si un feu de mine se déclare, auquel cas elles ont la même finalité que les cloisons ou les portes de ventilation. En règle générale, les portes coupe-feu
sont prévues à des endroits stratégiques de la mine, comme les accès au puits, les ateliers ou les bases de ravitaillement en carburant. En cas d’incendie, elles seront fermées de manière à isoler les différentes parties de la mine. Les portes coupe-feu, lorsqu’elles existent, doivent être dégagées et tenues en état de fonctionner en permanence.

En règle générale, les **ventilateurs auxiliaires** sont placés là où il est nécessaire d’augmenter la pression de l’air pour forcer l’air à travers les chantiers difficiles à ventiler. Le ventilateur auxiliaire pousse des quantités relativement élevées d’air frais à travers une galerie, chassant poussière et fumée de sautage vers le ventilateur d’extraction.

Une **toile d’aérage** est un séparateur en Fabrine ou en toile de jute qui sert à assurer une ventilation auxiliaire. Elle est suspendue entre le plafond (ou la couronne) et le sol, de manière à créer une seconde voie d’air dans une galerie sans issue.
INSTRUMENTS UTILISÉS POUR LA VENTILATION

Un **manomètre** est un tube transparent en forme de U qui est partiellement rempli d’un liquide servant à déterminer les différentiels de pression sur un bouchage ou une cloison (la paroi d’un refuge). La variation de la hauteur du fluide dans un manomètre à colonne liquide est proportionnelle à la différence de pression.

Un **anémomètre** sert à mesurer la vitesse de l’air. Il s’agit d’un petit ventilateur qui tourne sous l’effet du courant atmosphérique. L’instrument est calibré de sorte que chaque tour d’hélice correspond à une unité de déplacement de l’air.

Un **vélosmètre** est un petit instrument à lecture directe qui sert à mesurer la vitesse de l’air à un endroit précis. La pression exercée sur une hélice se déplaçant dans un tunnel circulaire active un pointeur qui indique la vitesse de l’air circulant dans le chantier minier. Voici la formule utilisée pour calculer le volume d’air et son débit :

Calcul du volume

\[\text{Hauteur (m)} \times \text{Largeur (m)} \times \text{Lecture Vélosmètre (vitesse} \frac{m}{s}) \]
\[= \text{Volume d’Air (Mètres cubes par sec.)} \]

p. ex., 10 m x 10 m x 500 m/s = 50,000 m³/s

Les **tubes de fumée** servent à mesurer les faibles flux de ventilation qu’un vélosmètre ou un anémomètre ne sont pas capables de détecter. Ils fournissent une indication du mouvement de l’air par rapport à la distance. Pour déterminer la vitesse de l’air, choisissez une distance établie (p. ex., 50 m, 100 m) et calculez le temps nécessaire à la fumée pour parcourir cette distance. Une fois ces données notées, utilisez la formule qui permet de calculer le volume d’air.

Un **baromètre** sert à mesurer la pression atmosphérique. Une baisse rapide de cet instrument indique une chute de la pression atmosphérique, faisant elle-même baisser la pression de la ventilation de la mine. Une telle situation peut entraîner la propagation de gaz résidant dans les vieux travaux et les chantiers abandonnés jusque dans les chantiers actifs, créant des conditions dangereuses.
SCHÉMAS DE MINE

Dans l’exploitation d’une mine au quotidien, des dessins à jour représentant les chantiers sont essentiels. Les dessins nécessaires aux équipes de sauvetage minier doivent indiquer l’emplacement, au minimum, des puits, des voies de circulation, des systèmes électriques, des lieux de travail, des refuges et des flux de ventilation. Ces renseignements font partie intégrante d’une intervention de sauvetage minier. Trois types de dessins de mine sont couramment utilisés :

Les vues en plan offrent une perspective plongeante sur la mine. Une mine doit avoir un plan distinct pour chaque niveau qui la compose. L'échelle peut varier et sera indiquée sur le schéma. Une légende indiquera les symboles utilisés pour représenter les ventilateurs, les portes de ventilation, les puits, les galeries montantes, les cheminées et ainsi de suite. Les symboles peuvent varier d'une mine à une autre.

Les mines qui possèdent de larges dimensions verticales doivent être représentées par des vues en coupe illustrant bien la disposition des lieux. Une coupe peut être considérée comme un plan vertical. Une mine peut avoir une dimension longue et une autre courte, donnant lieu à deux sortes de coupe : une coupe longitudinale pour la dimension longue et une coupe transversale pour la dimension courte (la largeur du gisement).
FEUX DE MINE SOUTERRAINE – MAÎTRISE ET SUPPRESSION

Les sauveteurs en milieu souterrain doivent avoir des connaissances de base sur les principes chimiques et le comportement du feu. Les incendies souterrains relèvent de la même classification que les incendies en surface et progressent selon les mêmes cinq phases. Les techniques de lutte sont comparables, mais elles ont été adaptées pour tenir compte des conditions particulières qui caractérisent le milieu souterrain.

Méthodes

Aux premiers stades d’un incendie, des attaques directes sont déployées au moyen d’agents extincteurs : eau (établissement de tuyaux d’incendie), mousse, extincteurs, poussière de roche ou sable, par exemple. À moins que l’incendie ne soit maîtrisable en quelques heures au moyen d’une attaque directe, les équipes auront recours à une méthode indirecte. Remarque : Les sauveteurs doivent être informés des dangers liés à l’eau sur de la roche en surchauffe (désagrégation ou effritement), à l’électricité, à la conversion de vapeur et à la défaillance catastrophique des pneus.

Quand un incendie est trop dangereux pour une attaque directe et seulement après avoir vérifié l’évacuation complète de tout le personnel de la mine, les équipes de sauvetage opteront pour des attaques indirectes. Parmi les méthodes, citons :

- Scellement
- Inondation
- Étouffement au moyen d’une mousse à grand foisonnement, silt, remblai, autre matière solide ou gaz inerte

La décision de recourir à une attaque indirecte ne peut être prise que par une personne chargée de l’incident sur place.

Scellement

Les feux de mine doivent être scellés quand il est impossible de progresser en les combattant directement ou quand d’autres conditions, comme l’inaccessibilité ou une probable accumulation de gaz explosif à un niveau dangereux, préconisent un scellement. Le scellement doit être posé simultanément à l’entrée et à la sortie. Si ce n’est pas possible, il faut d’abord sceller le côté de l’air frais.

Si la sortie est scellée en premier, l’équipe de sauvetage sera en danger, car l’air sera extrêmement chaud et toxique. En outre, il y aura un risque d’explosion en raison de la formation de gaz explosifs au cœur du foyer.

Les cloisons doivent être placées à une distance adéquate dans l’ouverture et aussi près que possible de l’incendie dans la mesure où cela ne pose pas de danger. Il faut prévoir assez de place pour un scellement secondaire. Le sol autour de la cloison doit être soigneusement inspecté et écaillé.

Une fois le scellement terminé, toute personne ne faisant pas partie de l’équipe de sauvetage minier doit immédiatement quitter le secteur d’intervention, jusqu’à ce qu’il soit possible d’y retourner sans risque. Si des travailleurs sont piégés dans la mine, les équipes de sauvetage minier doivent les sauver en priorité dès que possible.
Les **scellements temporaires** sont érigés pour chasser rapidement le plus d’air possible du feu. Par la suite, ils seront renforcés par des scellements permanents hermétiques à l’air. Parmi les types les plus courants de scellement ou d’éléments coupe-feu temporaires, citons :

- Cloison d’aérage en tissu industriel ou en plastique de forte épaisseur
- Sacs de sable
- Bois
- Cloisons gonflables vendues dans le commerce

Les **scellements permanents** sont construits après la mise en place des scellements temporaires. Ils doivent être fabriqués dans un matériau de construction lourd suffisamment solide pour résister à une explosion, à la pression et à l’écrasement, par exemple :

- Brique
- Béton
- Acier
- Béton projeté

Inondation

Pour maîtriser un incendie hors contrôle, inonder un espace clos de la mine est une autre méthode possible. Elle n’est employée qu’en dernier ressort, car elle complique tout travail de sauvetage ultérieur dans la zone.

Décision de sceller un feu de mine

Il n’existe pas de règles établies concernant le scellement des feux de mine. Il en revient aux équipes de sauvetage de collecter autant de renseignements que possible sur l’incendie et de les transmettre au centre des opérations d’urgence. Ce dernier devra quant à lui évaluer les renseignements et décider de sceller le feu ou de poursuivre les recherches pour retrouver des personnes piégées ou disparues, mais il doit en tout temps tenir compte du bien-être et de la sécurité des équipes de sauvetage.

Décision de desceller un feu de mine

Il ne faut tenter de desceller un feu de mine que dans les conditions suivantes :

- La teneur en oxygène de l’air scellé est assez faible pour que tout risque d’explosion soit écarté.
- Le monoxyde de carbone (indicateur de combustion) a diminué au point de ne présenter aucun danger.
- La température est descendue bien au-dessous du point d’inflammation.

Les essais de gaz portant sur l’air derrière les cloisons doivent être réalisés à intervalle raisonnable, selon ce qu’aura décidé le centre des opérations d’urgence. Les essais de gaz doivent être effectués à travers le scellement, avec le moins possible de répercussions sur celui-ci. Les équipes de sauvetage minier qui testent les niveaux de gaz doivent porter des appareils respiratoires autonomes.
Étouffement
La mousse à grand foisonnement éradique deux éléments du triangle de feu : l’oxygène et la chaleur. En effet, elle a un effet simultané d’étouffement et de refroidissement sur l’incendie. Précisons toutefois qu’elle ne peut être utilisée que contre des feux de classes A et B. Le plus souvent, elle est employée pour maîtriser les feux qui ne peuvent pas être approchés de près.

Les équipes ne doivent pas se déplacer dans une zone remplie de mousse, car cette substance peut nuire à l’audition, obstruer la vision et rendre les surfaces glissantes. Elles doivent l’éliminer autant que possible, par exemple, au moyen d’un jet brouillard.

La conversion de vapeur dans la mousse à grand foisonnement peut faire dangereusement baisser le niveau d’oxygène.

Silt, remblai et autres matériaux solides peuvent également être utilisés pour étouffer un feu. Cependant, de telles substances risquent de gravement compliquer la remise en état de la zone touchée dans la mine. Citons enfin les gaz inertes, comme le dioxyde de carbone ou l’azote, comme techniques d’étouffement de feu.

Interventions de l’équipe de sauvetage face aux dangers des mines souterraines
- Explosion de poussière ou de gaz
- Inflammation spontanée (mines souterraines de charbon)
- Effondrement
- Conditions du sol (effritement)
- Inondation ou atmosphère dangereuse
- Panne mécanique ou électrique catastrophique

Les premières mesures que doit prendre l’équipe de sauvetage face à un danger présumé consistent à assurer sa propre sécurité, évacuer ou protéger les travailleurs, analyser les conséquences et évaluer la situation. Une fois ces premières mesures prises, les équipes entameront le processus de remise en état de la mine. Ce processus consiste à restaurer :
- les ouvertures de la mine et les voies de circulation;
- les systèmes de ventilation;
- les services mécaniques et électriques;
- les communications.
Manuel de sauvetage minier de l’ouest du Canada

Chapitre 13 Compétences liées aux opérations de sauvetage
OBJECTIFS

Le présent chapitre présente des lignes directrices élémentaires sur certaines compétences liées aux opérations de sauvetage. Au terme de ce chapitre, l’apprenant sera en mesure de démontrer des connaissances et (ou) des compétences concernant :

- l’utilisation d’extincteurs portatifs;
- la recherche et le sauvetage dans des constructions;
- la prise en charge des victimes;
- le sauvetage dans les véhicules et les équipements mobiles;
 - la stabilisation d’un véhicule;
 - les accès;
- la formation complémentaire sur les interventions de sauvetage minier.

UTILISATION D’EXTINCTEURS PORTATIFS

Savoir utiliser un extincteur est essentiel dans une intervention d’urgence. Il serait impossible de prévoir tous les cas d’incendie susceptibles de se présenter, tant d’autres risques et dangers peuvent également se produire. Voici cependant des mesures de base qui s’appliquent à la majorité des cas d’incendie :

3. Préparez l’extincteur, retirez la goupille ou percez la cartouche, selon le type d’extincteur, avant de vous approcher du feu.
4. Effectuez un test rapide en activant la poignée pour apprécier le maniement de l’extincteur et déterminer le sens du vent, au besoin.
5. Approchez-vous du feu à contrevent (vous devez avoir le vent dans le dos) et surveillez tout changement de direction du vent. Adaptez votre position au besoin.
6. Progressez lentement et restez toujours à bonne distance du feu.
7. Orientez la buse vers la base du feu.
9. Effectuez un mouvement de balayage rapide pour être certain que l’agent extincteur atteigne la base du feu.
10. Recouvrez les flammes.
11. Vérifiez que le feu est éteint.
12. Ne tournez pas le dos au site. Reculez lentement et préparez-vous à ce que le feu reprenne.
13. Mettez le site sous surveillance.

RECHERCHE ET SAUVETAGE DANS DES CONSTRUCTIONS

La recherche et le sauvetage dans des constructions sont une intervention qui consiste à entrer dans un bâtiment présentant des conditions dangereuses afin de secourir ceux qui se trouvent à l’intérieur. Le but est le suivant :
• Trouver et évacuer les occupants piégés
• Localiser les dangers (p. ex., cœur du foyer, propagation de l’incendie, sources de gaz toxique)
• Établir et appliquer des mesures de contrôle (ventilation, fermeture des portes et fenêtres, extinction d’incendie)

Entrée dans le bâtiment
• Repérer et déterminer les points d’entrée et de sortie
• Établir les dangers (vérifier les portes et les fenêtres à la recherche de chaleur, fumée, affichage ou contenu dans les pièces)
• Entrer par les portes ou les fenêtres, à travers les murs ou par effraction

Entrée simple par la porte
Au cours de leurs recherches, les sauveteurs trouveront des portes fermées. Avant de pénétrer dans une structure ou une pièce, ils doivent :
• vérifier la chaleur et la ligne thermique sur les portes, es poignées et les charnières;
• observer et évaluer la présence de fumée ou feu;
• décider de la manière d’entrer selon le sens d’ouverture de la porte; se tenir accroupi, ouvrir lentement la porte et faire attention au risque d’explosion de fumée.

Recherche et sauvetage à l’intérieur
• Les recherches primaires sont d’abord menées dans les zones les plus critiques.
• Les recherches secondaires ont lieu après les premières mesures d’extinction de feu ou de ventilation.
• Les deux types font appel à des circuits de recherche systématique. Par exemple, effectuer les recherches en procédant soit du côté gauche, soit du côté droit.

PROCÉDURE DE RECHERCHE STANDARD
Les équipes de sauvetage minier doivent suivre certains protocoles et certaines procédures pour pouvoir intervenir en cas d’urgence aussi efficacement que possible et dans la plus grande sécurité qui soit. Les équipes de recherche jouent un rôle fondamental dans ces procédures. Leur composition est la suivante :
• Au moins deux personnes
• Une équipe d’intervention rapide (EIR ou équipe auxiliaire) de garde, établie avant la pénétration sur les lieux
• Un équipement (lampe torche, matériel de détection de gaz, appareil respiratoire, pied de biche, caméra thermique si disponible)

Figure 13-1 : Procédure de recherche standard en présence d’une ou deux équipes
Les **recherches primaires** sont des recherches systématiques effectuées rapidement concernant :
- les zones les plus gravement touchées;
- la zone contenant le plus de blessés;
- le reste de la zone à risque;
- les risques de propagation.

Les **recherches secondaires** sont des recherches systématiques approfondies qui visent à s’assurer de l’absence de victimes et de dangers dans le bâtiment tout entier. Dans la mesure du possible, elles seront exécutées par une autre équipe que celle ayant mené les recherches primaires, le but étant d’apprécier la situation avec un regard neuf.

Les **circuits de recherche** évitent aux sauveteurs de se perdre ou d’être désorientés pendant l’intervention. Le capitaine de l’équipe établira la direction à suivre (gauche ou droite) avant d’entrer dans la structure. L’équipe qui effectue le circuit de recherche suivra les murs jusqu’à ce qu’elle revienne au point de départ. Si les sauveteurs continuent de tourner vers la direction initiale à mesure qu’ils entrent et sortent des pièces et arrivent au point d’entrée, cela signifie qu’ils ont effectué des recherches complètes.
- S’ils trouvent une victime ou en cas de problème pendant leurs recherches, ils devront refaire le trajet en sens inverse jusqu’au point d’entrée pour évacuer le bâtiment.
- Pendant les recherches, les sauveteurs doivent maintenir une communication visuelle, tactile ou verbale pour ne pas se perdre de vue les uns les autres.
- En utilisant des outils, les membres de l’équipe peuvent étendre leur champ d’action.
- Le mode de déplacement des sauveteurs dépendra des conditions de la zone de recherche. Par exemple, en cas de fumée, ils ramperont et se déplaceront prudemment.

Zones à explorer
- Les toilettes, les placards et les espaces derrière et sous les meubles doivent faire l’objet d’une vérification.
- Il faut inspecter les zones près des fenêtres pour vérifier qu’aucune victime n’a tenté d’atteindre la fenêtre.
Indication qu’une pièce a été inspectée

- Fermez la porte.
- Indiquez que la pièce a été inspectée. Par exemple :
 - Faites une croix sur la porte.
 - Si vous ne parvenez pas à fermer la porte, placez une chaise derrière la porte de telle sorte que les pieds pointent vers l’extérieur.
 - Informez le commandement qu’une pièce a été inspectée.

GESTION DES VICTIMES

Localiser, sauver et soigner les victimes est le second principe fondamental des opérations de sauvetage minier. Il existe trois types de victimes :

- Victimes qui se trouvent déjà hors de la zone dangereuse
 - Elles doivent être prises en charge, soignées le cas échéant et emmenées dans une zone sécurisée.
- Victimes qui tentent de quitter la zone dangereuse
 - Elles doivent être protégées, informées des risques et emmenées en sécurité.
- Victimes piégées, inconscientes ou incapables de quitter la zone dangereuse
 - Les sauveteurs établiront les priorités, selon les principes qui régissent les recherches primaires.

Les blessés ne doivent pas être déplacés avant d’avoir été soignés, à moins qu’un danger immédiat ne les menace ou ne menace l’équipe de sauvetage. Le triage, un mécanisme de gestion prioritaire des victimes, est une étape essentielle lorsqu’un incident a fait plusieurs victimes.

DÉSINCARCÉRATION D’UN VÉHICULE OU ÉQUIPEMENT

Cette section est un survol des interventions de sauvetage lorsque des victimes sont piégées dans des véhicules. Les compétences ci-dessous peuvent également s’appliquer à la désincarcération de personnes dans des équipements fixes. Avant toute intervention, il faut évaluer et contrôler les risques.

| Lors d’une stabilisation, les sauveteurs ne doivent jamais se tenir sur un point de pincement ou dans une zone de danger. Ils doivent également faire attention aux coussins gonflables qui pourraient ne pas s’être déployés lors d’un accident de véhicule motorisé. |

Après analyse de la situation, mais avant toute autre étape de désincarcération, les sauveteurs doivent stabiliser le ou les véhicules et isoler les éventuelles sources d’énergie, comme une flèche ou une benne en position levée. La stabilisation est un mécanisme qui consiste à ajouter du soutien entre un objet instable (p. ex., un véhicule) et le sol ou tout autre point d’ancrage solide, afin d’empêcher tout mouvement involontaire de l’objet. Cette technique assure la sécurité des sauveteurs tout en évitant aux victimes de subir d’autres blessures.

Le véhicule doit être stabilisé de manière à éviter tout mouvement vertical et latéral. Pour réaliser la stabilisation, il est possible d’utiliser des coussins élévateurs, des blocs de bois, des sangles, des cordes, des crics, des dispositifs de calage, des cales de roue ou tout autre équipement spécialisé.
Accès aux victimes
L’accès aux victimes peut se faire par :
- une portière qui fonctionne normalement;
- une vitre;
- la découpe de pièces ou parties de la carrosserie du véhicule.

Désactivation des systèmes électriques
Les sauveteurs doivent désactiver tout système électrique à l’intérieur du véhicule, afin d’éviter des complications comme des mises en marche inattendues, des mouvements ou une combustion. Les principales mesures sont :
- le cadenassage et l’isolement des sources d’énergie;
- le débranchement de la batterie;
- le retrait de la clé de contact.

Protection et évacuation des victimes
Il est essentiel de protéger la victime, de la surveiller et de communiquer avec elle tout au long de la désincarcération. Le principe de base de cette intervention est de retirer le véhicule autour de la victime.

La désincarcération peut être réalisée à l’aide de simples outils manuels ou outils électriques. Les sauveteurs doivent avoir suivi une formation sur le bon usage des outils disponibles.

Les victimes doivent être mises en condition comme il convient avant la désincarcération, à moins que leur vie ne courre un danger immédiat.

AUTRES TECHNIQUES DE SAUVETAGE

Une formation complémentaire est nécessaire pour répondre aux diverses situations de sauvetage, tel qu’établi par les procédures de détermination des risques propres au site. Ces compétences n’entrent pas dans la portée du présent manuel. Parmi ces compétences, citons :
- Communications/structure de commandement
- Sauvetage en eaux vives et sur la glace
- Intervention en cas d’avalanche
- Espaces confinés/atmosphères dangereuses
- Marchandises dangereuses/intervention en cas d’accident nucléaire
- Procédures de dynamitage
- Sauvetage par câble technique
- Protection contre les chutes
- Effondrement de bâtiments et éboulements
- Effraction
- Désincarcération d’un véhicule
- Exploitation d’équipement lourd
- Opérations d’urgence en milieu souterrain
- Faune et flore (feux de végétation)
- Sauvetage et lutte contre les incendies des aéronefs
- Lutte contre les incendies propre au site
- Lutte contre les incendies dans des constructions
- Recherche et sauvetage en milieu sauvage
Manuel de sauvetage minier de l’ouest du Canada

Annexe
Certifications provinciales
Surface Mine Rescue Certificate

This Surface Mine Rescue Certificate is awarded to

_____________________________ Initial ___________________ of ____________________________

for Basic Mine Rescue Work, having taken a course of training and passed an examination conducted by the Ministry of Energy and Mines.

Dated this _____XXth_____ day of _____Month_____ 200X____

Expires the _____XXth_____ day of _____Month_____ 200X____

Examining Inspector
Ministry of Energy and Mines
MINING AND MINERALS DIVISION

No. UG 00000

This certificate is awarded to

NAME

of ...

TOWN OR CITY, BRITISH COLUMBIA

Ministry of Energy and Mines
for Basic Mine Rescue Work, having taken a course of training and passed an examination conducted by the Ministry of Energy and Mines.

Dated thisday of .., 2004

Expires theday of .., 2009

Examining Inspector

..
Northwest Territories
SURFACE MINE RESCUE CERTIFICATE

This certifies

received Mine Rescue training and
qualifies to use MINE RESCUE APPARATUS.

Dated at Yellowknife
this ___ day of ______, 20___

Chief Inspector of Mines

Examining Inspector of Mines

WSCC Workers’ Safety & Compensation Commission
Promoting workplace safety and care for injured workers.
Northwest Territories
UNDERGROUND MINE RESCUE CERTIFICATE

Certificate Number: _______

This certifies

received Mine Rescue training, and
qualifies to use MINE RESCUE APPARATUS.

Dated at Yellowknife
this _ day of _____, 20__

Chief Inspector of Mines

Examining Inspector of Mines

WSCC Workers’ Safety & Compensation Commission
Promoting workplace safety and care for injured workers.
Nunavut
SURFACE MINE RESCUE CERTIFICATE

This certifies
received Mine Rescue training, and
qualifies to use MINE RESCUE APPARATUS.

Dated at Yellowknife
this _day of ________, 20__

Chief Inspector of Mines

Examining Inspector of Mines

WSCC Workers’ Safety
& Compensation Commission

Promoting workplace safety and care for injured workers.
Certificate Number: _______

Nunavut
UNDERGROUND MINE RESCUE CERTIFICATE

This certifies

received Mine Rescue training and
qualifies to use MINE RESCUE APPARATUS.

Dated at Yellowknife
this _ day of ______, 20__

Chief Inspector of Mines

Examining Inspector of Mines

Promoting workplace safety and care for injured workers.
Yukon Workers’ Compensation Health and Safety Board
Occupational Health and Safety

This
Surface Mine Rescue Certificate
is awarded to

ANY PERSON

of

WHITEHORSE, YT

for Basic Mine Rescue Work, having taken a course of training and passed an examination conducted by the Yukon Workers’ Compensation Health and Safety Board.

Dated this 25th day of March 2015

Expires this 25th day of March 2015

Examinining Safety Officer
Yukon Workers’ Compensation Health and Safety Board
Occupational Health and Safety

This
Underground Mine Rescue Certificate
is awarded to

ANY PERSON

of

WHITEHORSE, YT

for Basic Mine Rescue Work, having taken a course of training and passed an examination conducted by the Yukon Workers’ Compensation Health and Safety Board.

Dated this 25th day of March 2015

Expires this 25th day of March 2015

Examiner Safety Officer